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Researches in Bayesian sensitivity analysis and robustness have mainly dealt with the com-
putation of the range of some quantities of interest when the prior distribution varies in
some class. Recently, researchers’ attention turned to the loss function, mostly to the
changes in posterior expected loss and optimal actions. In particular, the search for optimal
actions under classes of priors and/or loss functions has lead, as a first approximation, to
consider the set of nondominated actions. However, this set is often too big to take it as
the solution of the decision problem and some criteria are needed to choose an optimal
alternative within the nondominated set. Some authors recommended to choose the con-
ditional C-minimax or the posterior regret C-minimax alternative within the set of all pos-
sible alternatives. These criteria are quite controversial since they could lead to actions
with huge relative increase in posterior expected loss with respect to Bayes actions. To
overcome such drawback, we propose a new method, based on the smallest relative error,
to choose the least sensitive action and to discriminate alternatives within the nondomi-
nated set when the decision maker is interested in diminishing the relative error. We study
how to compute the least sensitive action when we consider classes of convex loss func-
tions. Furthermore, we obtain its relation with other proposed solutions: nondominated,
minimax and posterior regret minimax actions. We conclude the paper with an example
on the estimation of the mean of a Poisson distribution.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Sensitivity analysis is an important part in the application of any mathematical model to real problems. In many fields it is
worth studying how changes in the input parameters affect the output from a model. A large, but not exhaustive, number of
examples can be found in [23]. Similarly, the sensitivity analysis is essential in Bayesian analysis and decision theory. The
early 1990s was the golden age of Bayesian sensitivity analysis, in that many statisticians were highly active in research
in the area, and rapid progress was being achieved. See [17] for a thorough review of those accomplishments.

We consider the standard Bayesian decision theoretic framework for statistical problems. Let X be an observation from a
distribution Ph with density phðxÞ, where h is in the parameter space H. We consider priors p in a class of distributions C and
loss functions L in a class L. The actions a are considered in the action space A.

Let px denote the posterior density when x is observed, mpðxÞ the (prior) marginal density and qðp; L; aÞ the posterior ex-
pected loss of a, i.e.
. All rights reserved.
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qðp; L; aÞ ¼
R

H Lða; hÞphðxÞpðhÞdh

mpðxÞ
¼ Epx ½Lða; hÞ�:
Definition 1. For any ðL; pÞ 2L� C, a Bayes action corresponding to ðL; pÞ, denoted by a�ðL;pÞ, is an action that minimizes
qðp; L; aÞ in A, i.e.
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qðp; L; a�ðL;pÞÞ ¼ inf
a2A

qðp; L; aÞ:
Since the conclusions of the analysis depend on p and L, their choice in L� C must be very careful and the consequences
must be somehow measured. Excellent surveys of sensitivity analyses with respect to the prior are [3,4,13], whereas sen-
sitivity with respect to the loss function has been considered in [7,9,11], among others. The key idea in these, and related,
works is the choice of a class of priors and/or loss functions instead of unique prior and loss function. Sensitivity is then ana-
lyzed considering some measures, mainly the range spanned by a quantity of interest as the prior distribution (and/or the
loss function) varies in the assigned class. The main differences among works in Bayesian sensitivity are about the choice of
the classes and the sensitivity measures.

The most common measures of interest are the posterior mean, the posterior variance and the posterior expected loss, see
e.g. [5,14,15,21,24,25], among others. The relevance of the calibration of these measures is stressed in many studies but,
unfortunately, there are only few proposals to deal with it and find ‘‘objective” tools to interpret their values. See [19] for
one of them.

Martín et al. [11] show that the use of measures based on the range can provide misleading conclusions in the sensitivity
analysis with respect to the loss function. Different approaches have been proposed, e.g. selecting the ‘‘best” (with respect to
some criterion) optimal alternative. The choice of the set of Bayes alternatives can be unsuitable since there are Bayes alter-
natives that provide very large posterior expected losses when the choice of the prior distribution or the loss function is not
the correct one. In [18], Ríos Insua and Criado show that the nondominated actions are the optimal solutions of the decision
problem when considering a class of loss functions. Since this set is usually very large, it is very important to choose an alter-
native in it. Some authors, e.g. Betrò and Ruggeri [6] and Ríos Insua [16], studied the conditional and posterior regret C-mini-
max approaches which could be used as criteria to choose an action in a class, e.g. the set of nondominated actions. As shown
in the paper, these actions could lead to a huge relative increase in posterior expected loss with respect to Bayes actions.
Therefore, in this paper we propose and study a sensitivity measure, extension of one introduced by Ruggeri and Sivaganesan
[22], that overcomes such drawback. The measure leads to an optimality criterion and optimal actions, called least sensitive
ones, which are compared with Bayes and nondominated ones. We provide also results useful in implementing algorithms
for the actual computation of least sensitive actions.

The structure of the paper is the following. In Section 2 we motivate with an example the need for a new sensitivity mea-
sure and then we introduce our measure, comparing it with others existing in the literature. From this measure we define the
least sensitive alternative (LS). We dedicate Section 3 to the relation between LS and other alternatives: Bayes, nondominat-
ed, . . .. Section 4 provides results to characterize and calculate LS actions under classes of convex loss functions. We illustrate
the previous results with an example about estimation of the parameter of a Poisson distribution when the prior distribution
belongs to different parametric classes. The paper ends with some concluding remarks.

2. A new sensitivity measure

In this section we review available methods of discrimination among alternatives and propose a new one, that we con-
sider more effective in choosing ‘‘optimal” actions and decision rules when the relative increase in posterior expected loss or
Bayes risk, respectively, is the main concern for the decision maker.

2.1. The least sensitive action

Betrò and Ruggeri [6] and Vidakovic [26] consider the conditional C-minimax alternatives, that can be easily extended to
L� C-minimax:

Definition 2. a� is a conditional L� C-minimax action if
sup
ðL;pÞ2L�C

qðp; L; a�Þ ¼ inf
a2A

sup
ðL;pÞ2L�C

qðp; L; aÞ:
Thus, the conditional L� C-minimax principle is a conservative criterion, in the sense that it protects against the worst
possible cases.

Ríos Insua in [16] and Dey and Micheas in [8] propose another alternative, the former paper for classes of priors and the
latter one for classes of loss functions. The extension of the criterion to joint classes of priors and losses is straightforward.
Let rðp; L; aÞ be the posterior regret of an alternative a, defined as
rðp; L; aÞ ¼ qðp; L; aÞ � qðp; L; a�ðL;pÞÞ:
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Definition 3. aM is the posterior regret L� C-minimax (PRLGM) action if
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sup
ðL;pÞ2L�C

rðp; L; aMÞ ¼ inf
a2A

sup
ðL;pÞ2L�C

rðp; L; aÞ:
As a conservative criterion, an action is taken such that it protects against the worst possible discrepancy between the
corresponding posterior expected losses and the optimal ones, as priors and losses vary in the class L� C.

However, the choice of these alternatives often produces much greater posterior expected loss than the Bayes alterna-
tives. The relative error can be very large, as shown in the following example.

Example 1. Let C ¼ fp1; p2; p3g be a class of three prior distributions such that their posterior distributions are
p1x � Nð0;10Þ, p2x � Nð1;0:1Þ and p3x � Nð0:5;5Þ. We suppose that the preferences are modelled by the quadratic loss
function L (the Bayes actions are the posterior means). The posterior expected losses for the alternatives a can be described
by parabolas centered on the posterior means, i.e.
qðp1; aÞ ¼ ða� 0Þ2 þ 10;

qðp2; aÞ ¼ ða� 1Þ2 þ 0:1;

qðp3; aÞ ¼ ða� 0:5Þ2 þ 5:
The conditional C-minimax action is a� ¼ 0 (Bayes action for p1), whereas the posterior regret C-minimax action is
aM ¼ 0:5 (the middle point of the minimum and the supremum of the Bayes actions, Bayes action for p3), see Fig. 1. However,
it is worth mentioning that qðp2; L; a�Þ ¼ 1:1 while qðp2; L; a�ðL;p2ÞÞ ¼ 0:1, leading to a 1000% increase in the posterior expected
loss due to the Bayes alternative. Similarly, qðp2; L; aMÞ ¼ 0:350, denoting a 250% increase. We will see later that, in this
example, there exist alternatives with much smaller relative error.

As shown by the previous example, it is important that any proposed criterion controls the relative increase in posterior
expected loss with respect to the one from Bayes alternatives.

First, we define a new sensitivity measure, which extends the measure proposed by Ruggeri and Sivaganesan [22] who
considered a quadratic loss function rather than a general one, like here.

Definition 4. Given a pair ðL; pÞ 2L� C and the action a, we define the sensitivity of a respect to the pair ðL; pÞ, which will
be denoted by Sðp; L; aÞ, as
Sðp; L; aÞ ¼
qðp; L; aÞ � qðp; L; a�ðL;pÞÞ

qðp; L; a�ðL;pÞÞ
:

Therefore, we consider the relative increase in posterior expected loss when we have an action a instead of the Bayes ac-
tion. Note that this measure is scale invariant. If we consider the quadratic loss function:
Sðp; L; aÞ ¼ ða� lpÞ
2

Vp ;
being lp and Vp the posterior mean and variance of p.
From now onwards, we assume qðp; L; a�ðL;pÞÞ > 0 for all ðL; pÞ 2L� C, and A will be a bounded closed interval. Regarding

notations, we will use Sðp; aÞ or SðL; aÞ when the loss function or the prior are, respectively, known.
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Fig. 1. Posterior expected loss and regret for each distribution.
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Finally, we propose a criterion which chooses the alternative minimizing the relative error:

Definition 5. as is the least sensitive alternative (LS) for L� C if
SðasÞ ¼ sup
ðL;pÞ2L�C

Sðp; L; asÞ ¼ inf
a2A

sup
ðL;pÞ2L�C

Sðp; L; aÞ;
where SðaÞ denotes the sensitivity of an action a with respect to L� C.

In the next example we see how our LS alternative can be better than conditional C-minimax and posterior regret C-mini-
max actions, when we are interested in minimizing the relative error with respect to Bayes action.

Example 2 (Continuation of Example 1). It is easy to prove that the sensitivity for each action a with respect to the class C is
SðaÞ ¼
ða�1Þ2

0:1 ; if a 6 10=11;

ða�0Þ2
10 ; otherwise:

8<
:

If we restrict the set of alternatives A to the three Bayes actions f0; 0:5;1g, then a�p2
¼ 1 is the least sensitive action, see Fig. 2.

In fact, we have Sða�p1
Þ ¼ 10, Sða�p3

Þ ¼ 2:5 and Sða�p2
Þ ¼ 0:1, denoting, respectively, 1000%, 250% and 10% increases with respect

to the optimal expected loss (the posterior expected loss of the Bayes action).
If we consider the set of alternatives A ¼ R, then the least sensitive alternative is as ¼ 10

11, with sensitivity
SðasÞ ¼ 10

112 ¼ 0:0826, i.e. ‘‘only” a maximum increase of 8.26%. In this case the LS action is not a Bayes alternative for the
priors in C.

In general, the LS actions are not Bayes alternatives for any pair ðL; pÞ 2L� C. The same situation occurs for other C-
minimax criteria and we refer to Vidakovic [26, and the references therein], for a justification of the C-minimax approach.

2.2. The least sensitive decision rule

In this section, we define the LS decision rule and we show its utility comparing it with the C-minimax and the C-mini-
max regret decision rules in an example. We assume here that the loss function L is known, whereas the prior p varies in a
class C. These rules consider the Bayes risk rðp; dÞ of a decision rule d with respect to a prior p,
rðp; dÞ ¼
Z
fx:mpðxÞ>0g

qðp; dðxÞÞdFmðxÞ;
where FmðxÞ is the marginal distribution of X. A (nonrandomized) decision rule is any function of the sample space into A,
while a decision rule d� is said to be C-minimax if
sup
p

rðp; d�Þ ¼ inf
d

sup
p

rðp; dÞ:
A decision rule d̂ is said to be C-minimax regret rule if
sup
p
½rðp; d̂Þ � rðpÞ� ¼ inf

d
sup

p
½rðp; dÞ � rðpÞ�;
where rðpÞ is the Bayes risk for p, i.e.:
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rðpÞ ¼ rðp; dpÞ ¼ inf
d

rðp; dÞ
and dp is the Bayes rule.
Similarly, we can define the least sensitive decision rule ds.

Definition 6. A rule ds is said to be the least sensitive decision rule for C if
sup
p

Srðp; dsÞ ¼ inf
d

sup
p

Srðp; dÞ
with
Srðp; dÞ ¼
Z
fx:mpðxÞ>0g

Sðp; dðxÞÞdFmðxÞ:
Randomized decision rules are not considered since Theorem 3 in [3], ensures that only nonrandomized rules should be
considered when A is convex and Lða; hÞ is a convex loss function of a.

The next example clarifies the concepts.

Example 3 [6]. Let X be a Bernoulli random variable with density
phðxÞ ¼ hxð1� hÞ1�x;
where x ¼ 0;1 and the unknown parameter h 2 ½0;1�. We consider the quadratic loss function and two prior distributions
p1 � Uð0;1Þ and p2 with density
p2ðhÞ ¼
3=2; if 0 6 h 6 1=2;

1=2; if 1=2 < h 6 1:

�

Given x ¼ 1, then it follows that, for all a 2A,
qðp1; aÞ ¼ a� 2
3

� �2

þ 1
18

and qðp2; aÞ ¼ a� 5
9

� �2

þ 43
648

:

Thus, the Bayes actions are 2/3 and 5/9 for p1 and p2, respectively, i.e. the posterior means of p1 and p2. Therefore, the min-
imum expected losses coincide with the posterior variances, 1/18 for p1 and 43/648 for p2, respectively.

It is easy to prove that the sensitivity for all a 2A is
SðaÞ ¼ 18ða� 2=3Þ2; if a 6 as;

648=43ða� 5=9Þ2; if a P as;

(

where as ¼ ð10
ffiffiffiffiffiffi
43
p

þ 86Þ=ð18
ffiffiffiffiffiffi
43
p

þ 129Þ is the LS actions. We can see that the conditional C-minimax action is a� ¼ 9=16
and the posterior regret C-minimax action is aM ¼ 11=18.

When x ¼ 0 is given, then,
qðp1; aÞ ¼ a� 1
3

� �2

þ 1
18

and qðp2; aÞ ¼ a� 4
15

� �2

þ 67
1800

:

The sensitivity for all a 2A is
SðaÞ ¼ 18ða� 1=3Þ2; if a 6 as;

1800=67ða� 4=15Þ2; if a P as;

(

where, in this case, as ¼ ð
ffiffiffiffiffiffi
67
p

þ 8Þ=ð3
ffiffiffiffiffiffi
67
p

þ 30Þ. The conditional C-minimax action is a� ¼ 1=3 and the posterior regret C-
minimax action is aM ¼ 3=10. The Bayes actions are 1/3 and 4/15 for p1 and p2, respectively.

As shown in [6], the C-minimax decision rule is d�, with d�ð1Þ ¼ 2=3 and d�ð0Þ ¼ 1=3, and the C-minimax regret rule is d̂
such that d̂ð1Þ ¼ 0:617326 and d̂ð0Þ ¼ 0:29527. In this example, the LS actions never coincide with the C-minimax and the C-
minimax regret rules. The next table shows the posterior expected loss and the sensitivity corresponding to as, a�, aM , and the
actions determined by the rules d�, d̂ and ds, respectively:
Optimal (X ¼ 0)
 Value
 qðp1; �Þ
 qðp2; �Þ
 Sensitivity
Bayes for p1
 0.3333
 0.0556
 0.0417
 0.1194

Bayes for p2
 0.2667
 0.0600
 0.0372
 0.0799

Conditional C-minimax (a�)
 0.3333
 0.0556
 0.0417
 0.1194

C-minimax regret (aM)
 0.3
 0.0567
 0.0383
 0.0299

LS action (as)
 0.2966
 0.0569
 0.0381
 0.0243
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Optimal (X ¼ 1)
 Value
 qðp1; �Þ
 qðp2; �Þ
 Sensitivity
Bayes for p1
 0.6666
 0.0556
 0.0787
 0.1858

Bayes for p2
 0.5556
 0.0679
 0.0664
 0.2220

Conditional C-minimax (a�)
 0.5625
 0.0664
 0.0664
 0.1953

C-minimax regret (aM)
 0.6111
 0.0586
 0.0694
 0.0556

LS action (as)
 0.6136
 0.0584
 0.0697
 0.0507
Optimal
 Value(X ¼ 0)
 Value(X ¼ 1)
 Srðp; dÞ
C-minimax rule (d�)
 0.3333
 0.6666
 0.1444

C-minimax regret rule (d̂)
 0.2952
 0.6174
 0.0353

LS rule (ds)
 0.2896
 0.6229
 0.0345
It is worth mentioning that the C-minimax regret leads to actions whose sensitivity is very close to the one of the LS
actions, where conditional C-minimax leads to actions with high sensitivity. It is logical that it happens this since C-minimax
does not consider the value of the other prior distributions and loss functions, but only those in which the maximum is
minimized.
3. LS actions and nondominated set

In this section we study the relation between LS actions and nondominated sets, which have been considered in Bayesian
robustness by Martín et al. [11] and Martín and Arias [10], among others. This aspect was not considered in [22] where the
interest was mostly on asymptotic properties of the sensitivity measure.

Ríos Insua and Criado [18] give foundations for robust Bayesian analysis, considering a preference relation � over A, the
set of alternatives. We consider the following preference relation on the set L� C:

Given a, b, two alternatives in the set of alternatives A, then b � a if and only if
qðp; L; aÞ 6 qðp; L; bÞ
for all ðL; pÞ 2L� C.

Definition 7. Let a; b 2A be such that a–b; we will say that a dominates b if for all ðL; pÞ 2L� C it holds that
qðp; L; aÞ 6 qðp; L; bÞ, and for some ðL0; p0Þ 2L� C it holds the strict inequality, qðp0; L0; aÞ < qðp0; L0; bÞ:

Note that a dominates b if and only if a 	 b (that is, a � b and :ðb � aÞ). Therefore, an alternative a 2A is nondominated if
there is no other alternative b 2A such that b dominates a.

Proposition 1. For any dominated action a 2A there is another action b 2A such that SðaÞP SðbÞ.

Proof. If a is dominated, let b 2A such that it dominates a. Then, for all ðL; pÞ 2L� C, it follows that
qðp; L; bÞ 6 qðp; L; aÞ
with strict inequality for some pair ðL0; p0Þ 2L� C. Then
Sðp; L; bÞ 6 Sðp; L; aÞ
for all ðL; pÞ 2L� C and therefore SðbÞ 6 SðaÞ. h

Corollary 1. If the LS action exists and is unique then it is nondominated.

With a similar proof we can see that the conditional C-minimax and the C-minimax regret actions are nondominated
alternatives too.

Example 4 (Continuation of Example 3). Example 3 presented a LS action which was not Bayes. Furthermore, applying results
in [2], it follows that the set of nondominated alternatives is ½5=9;2=3� when x ¼ 1, whereas it becomes ½4=15;1=3� when
x ¼ 0. In this case the set of Bayes actions is strictly contained in the nondominated one.
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In general there are not inclusion relations between the Bayes actions and the nondominated actions sets. It is easy to see
that, if there is a unique Bayes alternative a for all ðL; pÞ 2L� C, then a is the unique nondominated alternative. Although
this is the best case, it seldom occurs, see [1] for more results.

We now prove that, under some general conditions, the LS actions are Bayes actions. The first step will be the search for
the nondominated set.

3.1. Nondominated set under convex loss functions

In this Section we suppose that the set of alternatives is A ¼ R. The extension of the results to intervals of R is
straightforward.

Let L be a class of convex loss functions in a 2A, such that for all ðL; pÞ 2L� C, the set of Bayes alternatives BðL;pÞ is non
empty. Then, it is easy to prove that, for all ðL; pÞ 2L� C, qðp; L; aÞ and Sðp; L; aÞ are convex too. Moreover, qð�; L; pÞ is strictly
decreasing in ð�1; aðL;pÞÞ, constant in ½aðL;pÞ; aðL;pÞ� and strictly increasing in ðaðL;pÞ;þ1Þ, where
aðL;pÞ ¼ inf
a2BðL;pÞ

a;

aðL;pÞ ¼ sup
a2BðL;pÞ

a:
It is well known (see, e.g. [20]) that, if a function is convex in a set, then it is continuous in its interior. Therefore, the alter-
natives aðL;pÞ and aðL;pÞ are Bayes alternatives.

It can be easily shown that the set of nondominated alternatives is included in the interval ½l�; l��, where l� and l� are the
infimum and supremum of the set of Bayes alternatives, respectively, i.e.,
l� ¼ inf
ðL;pÞ2L�C

aðL;pÞ;

l� ¼ sup
ðL;pÞ2L�C

aðL;pÞ:
The width of the interval ½l�; l��, often called ‘‘range”, is the most common sensitivity measure; see [13] and the references
therein. Moreover, such interval coincides with NDðAÞ, the nondominated set in A under strictly convex loss functions.
This is not true when using loss functions which are not strictly convex, as proved in the following theorem in [2].

Theorem 1. Let L be a class of convex loss functions in A and C a class of probability distributions such that for all ðL; pÞ 2L� C,
the set of Bayes alternatives BðL;pÞ is non empty. Let a� ¼ infðL;pÞ2L�CaðL;pÞ and let a� ¼ supðL;pÞ2L�CaðL;pÞ. Then, if a� is smaller than
a�, it holds that
ða�; a�Þ#NDðAÞ# ½a�; a��:
Otherwise NDðAÞ ¼ ½a�; a��.
3.2. LS and the Bayes actions under quadratic loss functions

We consider the quadratic loss function Lða; hÞ ¼ ða� hÞ2. As we have seen before, it is easy to see that
Sðp; L; aÞ ¼ ða� lpÞ
2

Vp ;
being lp and Vp the posterior mean and variance of p. In this case Sðp; L; aÞ coincides with the relative sensitivity given by
Ruggeri and Sivaganesan [22], using hðhÞ ¼ h.

We will now see when the LS actions are Bayes actions with respect to the prior.

Proposition 2. Let L ¼ fLk : Lkða; hÞ ¼ kða� hÞ2; k > 0g be the class of quadratic loss functions and let C be a class of prior
distributions contained in fp : �1 <

R
H hdpxðhÞ ¼ lp <1g and let l� and l� be the values
l� ¼ inf
p2C

lp;

l� ¼ sup
p2C

lp;
then the nondominated set is ½l�; l��.

Proof. See [2]. h

Proposition 3. Under the same conditions as Proposition 2 and the convexity of the class of prior distributions, the set of Bayes
actions BðAÞ is such that
ðl�; l�Þ#BðAÞ#NDðAÞ ¼ ½l�; l��:
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Proof. We start proving that the class of posterior distributions is convex too. Given p1; p2 2 C; for any k 2 ½0;1�, we consider
the distribution p ¼ kp1 þ ð1� kÞp2 2 C. It holds, see [5],
mpðxÞ ¼ kmp1 ðxÞ þ ð1� kÞmp2 ðxÞ
and
pxðhÞ ¼ kðxÞp1xðhÞ þ ð1� kðxÞÞp2xðhÞ;
being
mpðxÞ ¼
Z

pðhÞf ðxjhÞdh
and
kðxÞ ¼ kmp1 ðxÞ
mpðxÞ

¼ kmp1 ðxÞ
kmp1 ðxÞ þ ð1� kÞmp2 ðxÞ

2 ½0;1�:
Considering kðxÞ as a function in k for x fixed, then kðxÞ is increasing, continue and it maps the interval ½0;1� into ½0;1�. Thus,
the class of posterior distributions is convex.

On the other hand, if lp is the posterior mean of p, we have that
lp ¼ kðxÞlp1
þ ð1� kðxÞÞlp2

:

Moreover, given a value l 2 ½lp1
; lp2
�, it is easy to prove that there exists a 2 ½0;1�, such that l is the posterior mean for the

distribution p ¼ ap1 þ ð1� aÞp2.
As l 2 ½lp1

; lp2
�, there exists k 2 ½0;1�, such that l ¼ klp1

þ ð1� kÞlp2
; thus, it is sufficient to take
a ¼ kmp2 ðxÞ
kmp2 ðxÞ þ ð1� kÞmp1 ðxÞ
to prove the result. h

This proposition is very interesting since it shows that any nondominated alternative is a Bayes action for some pair
ðL; pÞ 2L� C, with the possible exception of some extreme points of NDðAÞ. Then, the LS action is Bayes action with re-
spect to some pair ðL; pÞ 2L� C, except perhaps when the LS action is l� or l�.

4. LS actions under convex loss functions

From now onwards, we will consider a unique convex loss function L in a 2A. Similar results are valid with a class of
convex loss functions. We now provide results useful to implement an algorithm to compute LS actions.

Let Pa denote the set of all densities pa such that Sðpa; aÞ ¼ SðaÞ. This set can be interpreted as the set of the ‘‘relativity
least favorable priors” with respect to action a.

Proposition 4. Let A ¼ R or a closed and bounded interval of R. Then, SðaÞ has at least one minimum as in A. If Pa is not empty
for any a 2A and the loss function is strictly convex, then there is a unique LS action.

Proof. As we saw, if Lða; hÞ is convex in a 2A, then for all p 2 P, Sðp; aÞ is convex, so that SðaÞ (i.e. the supremum of convex
functions) is convex too. If Lða; hÞ is strictly convex, SðaÞ is strictly convex if the supremum is achieved in C, for any a 2A. h

As a first step to calculate the LS actions, we have the following:

Lemma 1. If at a0 2A there exists p0 2 Pa0 such that a0 6 a�p0
, then
Sða0Þ 6 SðaÞ for all a < a0: ð1Þ
If at a0 2A there exists p0 2 Pa0 such that a0 P a�p0
, then
Sða0Þ 6 SðaÞ for all a > a0: ð2Þ
If the loss function is strictly convex, then the strictly inequality holds in (1) and (2).

Proof. Due to the convexity of Sðp; �Þ, for all a < a0, it follows Sðp0; aÞP Sðp0; a0Þ, whereas the inequality is strict if L is strictly
convex. Then Sða0Þ 6 supp2C Sðp; aÞ ¼ SðaÞ. h

The above lemma, based on [6], provides a useful tool for discarding subintervals of A in the search of the LS actions, even
if the loss function is not strictly convex.

From now onwards, Lða; hÞ will be assumed a strictly convex function of a. Lemma 1 and Proposition 4 give immediately:
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Proposition 5. If at a0 there exist p1 and p2 2 Pa0 such that

a�p1
6 a0 6 a�p2

;

then a0 ¼ as. It follows that, at any a0–as, either a�p > a0 or a�p < a0 for all p 2 Pa0 .

Proof. By Lemma 1, for all a–a0, SðaÞP Sða0Þ. Then a0 is LS action. h

The converse is not necessarily true, but the following result holds:

Proposition 6. as is the unique alternative in A such that
a�p > a for some p 2 Pa 8a < as;

a�p < a for some p 2 Pa 8a > as:
Proof. Similar to the proof of Proposition 3 in [6]. h

Proposition 6 gives a constructive way for obtaining the LS actions. Starting from a given a, then some p 2 Pa is found,
along with the corresponding Bayes action. If the Bayes action is larger (smaller) than a, then the candidates for as are to
be sought to the right (left) of a. It is clear that in this way it is possible to provide an algorithm for bracketing as within
any prefixed accuracy.

Example 5. Suppose that X1;X2; . . . ;Xn is a sample from a uniform distribution Uð0; hÞ, the prior pa0 ;b belongs to the
following class of Pareto distributions
C1 ¼ fp � Pða0; bÞ; b 2 ½b0; b1� 
 Rþ; a0 > 2 fixedg
and the loss function is the quadratic loss function. The Bayes alternatives are the means of the posterior distributions
Pða;maxðXðnÞ; bÞÞ, where a ¼ a0 þ n and XðnÞ ¼maxi¼1;...;nXi. Thus, the nondominated set is
NDðAÞ ¼

a
a�1 XðnÞ; a

a�1 b1

� �
if b0 < XðnÞ < b1;

a
a�1 b0;

a
a�1 b1

� �
if XðnÞ < b0;

a
a�1 XðnÞ if XðnÞ > b1:

8><
>:
If XðnÞ > b1 the LS action is the unique nondominated alternative a
a�1 XðnÞ. Otherwise, the nondominated actions are

aba
¼ a

a�1 ba, where ba belongs to the interval ½maxðb0;XðnÞÞ; b1�. The sensitivity of each alternative a
SðaÞ ¼ sup
b2½b0 ;b1 �

SbðaÞ ¼ sup
b2½b0 ;b1 �

aða� 2Þ ðba � bÞ2

b2 ;
has a minimum in b ¼ ba and the supremum is achieved at b0 or b1.
The next table shows the LS actions for a0 ¼ 3, b0 ¼ 55, b1 ¼ 59, � ¼ 10�5 and for several samples:
n
 XðnÞ
 NDðAÞ
 LS actions
 Sensitivity
10
 57.702
 [62.511, 63.917]
 63.206
 0.018

100
 58.915
 [59.493, 59.578]
 59.536
 0.005

1000
 59.928
 59.988
 59.988
 0

10000
 59.996
 60.002
 60.002
 0
5. Numerical example: estimating a poisson mean

In this example, suggested by Me�czarski and Zieliński in [12], the LS action is found analytically in some interesting sit-
uations and we compare the LS action with the conditional C-minimax and posterior regret C-minimax alternatives.

Suppose that X1;X2; . . . ;Xn is a sample from a Poisson distribution PðkÞ and the prior pa;b belongs to one of the following
classes of Gamma distributions
C1 ¼ fp � Gða; bÞ; a 2 ½a1; a2� 
 Rþ; b > 0 fixedg;
C2 ¼ fp � Gða; bÞ; b 2 ½b1; b2� 
 Rþ; a > 0 fixedg;
C3 ¼ fp � Gða; bÞ; a 2 ½a1; a2� 
 Rþ; b 2 ½b1; b2� 
 Rþg;
where a and b are, respectively, the shape and scale parameters. We are interested in estimating the parameter k under qua-
dratic loss function. Thus, for any action a and p � Gða; bÞ, it is easy to see that
qðp; aÞ ¼ aþ nX
bþ n

� a

 !2

þ aþ nX

ðbþ nÞ2
;



312 J.P. Arias-Nicolás et al. / International Journal of Approximate Reasoning 50 (2009) 303–314
the posterior regret is
rðp; aÞ ¼ aþ nX
bþ n

� a

 !2
and ap ¼ aþnX
bþn . The sensitivity of a with respect to p � Cða; bÞ is then
Sðp; aÞ ¼
aþ nX � aðbþ nÞ
� 	2

aþ nX
:

By Proposition 2, we have the following result.

Corollary 2. If the class of prior distributions is C3,
NDðAÞ ¼ a1 þ nX
b2 þ n

;
a2 þ nX
b1 þ n

" #
:

In this case the nondominated set and the set of Bayes actions coincide. Thus, the LS actions for these models are Bayes
actions for some prior distribution p. The reason is that the parameter space is convex and Bayes actions are continuous func-
tions of the parameters.

The following results are obtained using simple algebra.

Corollary 3. If the class of priors is C3, then the sensitivity of a 2A is
SðaÞ ¼

qðpa2 ;b1 ; aÞ
qðpa2 ;b1 ; a�pa2 ;b1

Þ � 1; if a 6 as;

qðpa1 ;b2 ; aÞ
qðpa1 ;b2 ; a�pa1 ;b2

Þ � 1; if a P as;

8>>>><
>>>>:
being
as ¼
ða2 þ nXÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ nX

p
þ ða1 þ nXÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ nX

p
ðb1 þ nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ nX

p
þ ðb2 þ nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ nX

p ;
the LS action, which is the Bayes action under the prior
G knðXÞa2 þ ð1� knðXÞÞa1; knðXÞb1 þ ð1� knðXÞÞb2

� 	
2 C3;
being
knðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ nX

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ nX

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ nX

p :
The sensitivity of as is then
SðasÞ ¼
ðb2 þ nÞða2 þ nXÞ � ða1 þ nXÞðb1 þ nÞ
ðb2 þ nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ nX

p
þ ðb1 þ nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ nX

p
 !2

:

We can see in [16], that the posterior regret C-minimax action is
aM ¼

ða1b1 þ a2b2Þ=2nþ ða1 þ a2Þ=2
ðb1 þ b2Þ=2nþ 1

þ nX

b1b2=nþ ðb1 þ b2Þ=2
ðb1 þ b2Þ=2nþ 1

þ n
which is the Bayes action under the prior
G
ða1b1 þ a2b2Þ=2nþ ða1 þ a2Þ=2

ðb1 þ b2Þ=2nþ 1
;
b1b2=nþ ðb1 þ b2Þ=2
ðb1 þ b2Þ=2nþ 1

� �
2 C3:
Example 6. Suppose that X1;X2; . . . ;Xn is a sample from a Poisson distribution PðkÞ and the prior pa;b belongs to the
following class of Gamma distributions
C3 ¼ fp � Gða; bÞ; a 2 ½1;4�; b 2 ½2;3�g:
The nondominated set is, in this case, the closed interval ½15:462;17� and the posterior expected losses, the posterior regret
and the sensitivity of the Bayes, posterior regret C-minimax and the LS alternatives are shown in the next table for n ¼ 10
and X ¼ 20:
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Optimal action
 Value
 qðpa1;b2
; aÞ
 qðpa2 ;b1

; aÞ
 Sup. Post. Regret
 Sensitivity
a�pa1 ;b2�

15.462
 1.189
 3.784
 2.367
 1.671
apa2 ;b1

17
 3.556
 1.417
 2.367
 1.990
aM
 16.231
 1.781
 2.008
 0.592
 0.498

as
 16.197
 1.730
 2.061
 0.645
 0.455
Remark 1. If the class of prior distributions is C1, then the sensitivity of a 2A is
SðaÞ ¼

qðpa2 ; aÞ
qðpa2 ; a�pa2

Þ � 1; if a 6 as;

qðpa1 ; aÞ
qðpa1 ; a�pa1

Þ � 1; if a P as;

8>>>><
>>>>:
being as ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1þnXÞða2þnXÞ
p

bþn the LS action. The sensitivity the as is then
SðasÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ nX

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1 þ nX

q� �2

¼ 2
ða2 þ nXÞ þ ða1 þ nXÞ

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 þ nXÞða2 þ nXÞ

q !
:

Note that, in this case, the LS action is the geometrical mean of the extremes of the nondominated set. However, this
result is not always true, as we have seen in Example 1.

We can see too that the sensitivity of as does not depend on the parameter b. This is obvious, since as 2NDðAÞ, so there

exists as ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 þ nXÞða2 þ nXÞ

q
� nX 2 ½a1; a2� (which depends on the sample), such that as ¼ asþnX

bþn . As shown in [16], the pos-
terior regret C-minimax is the middle point of the set of nondominated alternatives, that is
aM ¼
a1þa2

2 þ nX
bþ n

;

which is the Bayes actions under the prior Gða1þa2
2 ; bÞ. Since aM > as, the sensitivity of the (PRGM) is
SðaMÞ ¼
qðpa1 ; aMÞ
qðpa1 ; a�pa1

Þ � 1 ¼ ða1 � a2Þ2

4ða1 þ nXÞ
:

Remark 2. If the class of prior distributions is C2, then the sensitivity of a 2A is
SðaÞ ¼

qðpb1 ; aÞ
qðpb1 ; a�pb1

Þ � 1; if a 6 as;

qðpb2 ; aÞ
qðpb2 ; a�pb2

Þ � 1; if a P as;

8>>>><
>>>>:
being as ¼ aþnX
b1þb2

2 þn
the LS action, which is the Bayes action under the prior Gða; b1þb2

2 Þ. The sensitivity of as is then
SðasÞ ¼
ðaþ nXÞðb1 � b2Þ

2

4 b1þb2
2 þ n

� 	2 :
In this case the posterior regret C-minimax is
aM ¼
a=nþ X

b1b2=nþ ðb1 þ b2Þ=2
ðb1 þ b2Þ=2þ n

þ 1
;

which is the Bayes action under the prior G a; b1b2=nþðb1þb2Þ=2
ðb1þb2Þ=2nþ1


 �
. Since aM > as, then the sensitivity of the PRGM action is
SðaMÞ ¼
aþ nX

4
b2 � b1

b1 þ n

� �2

:

6. Conclusions

We have generalized a sensitivity measure, proposed by Ruggeri and Sivaganesan [22], to address the problem of choos-
ing an action in a set when interested in reducing the relative increase in posterior expected loss with respect to Bayes alter-
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natives. We called the resulting actions ‘‘least sensitive” and we compared them with other ones, like the conditional C-mini-
max and the posterior regret C-minimax actions, showing the shortcomings of the latter ones. The choice of an ‘‘optimal”
action (with respect to some criterion) is important especially when sensitivity analysis leads to a lack of robustness so that
actions must be chosen very carefully. As discussed by some authors, the nondominated actions are the optimal solutions of
decision problems under classes of loss functions, whereas Bayes actions are the ‘‘classical” solutions in the Bayesian frame-
work. We have therefore compared LS with Bayes and nondominated actions under classes of convex loss function, providing
results useful in implementing algorithms for the actual computation of LS actions.

Possible extensions of the current work could lead to the study of LS actions under different classes of loss functions and
the study of asymptotic properties of the generalized measure, in the same fashion as in [22]. In a forthcoming paper, we are
studying the computation of LS actions under different classes of prior distributions.
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