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This paper deals with power-quality (PQ) event detection, classification and characteriza-
tion using higher-order sliding cumulants (which are calculated over high-pass filtered sig-
nals to avoid the low-frequency 50-Hz sinusoid), whose maxima and minima are the
coordinates of two-dimensional feature vectors. The classification strategy is based in com-
petitive layers. We focus on the problem of differentiating two types of transients: short-
duration (impulsive transients) and long-duration (oscillatory transients). The results show
that the measured vectors are classified into clearly differentiated clusters in the feature
space. The experience aims to set the foundations of an automatic procedure for PQ event
detection.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Power Quality (PQ) or power disturbances are con-
cerned with deviations of the voltage or current from the
ideal single-frequency sine wave of constant amplitude
and frequency. PQ problems commonly faced by facilities
operations include transients, sags, swells, surges, outages,
harmonics, and flickers that vary in quantity or magnitude
of the voltage. A consistent set of definitions can be found
in [1].
. All rights reserved.
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PQ event detection and classification is gaining impor-
tance due to worldwide use of delicate electronic devices.
Things like lightning, large switching loads, non-linear load
stresses, inadequate or incorrect wiring and grounding or
accidents involving electric lines, can create problems to
sensitive equipment, if it is designed to operate within nar-
row voltage limits, or if it does not incorporate the capabil-
ity of filtering fluctuations in the electrical supply [2,3].

The solution for a PQ problem implies the acquisition
and monitoring of long data records from the energy distri-
bution system, along with an automated detection and
classification strategy, which allows the identification of
the cause of these voltage anomalies. The goal of the signal
processing analysis is to get a feature vector from the data
record under study, which constitute the input to the com-
putational intelligence modulus, with the task of classifica-
tion. Signal processing for this purpose are mainly based in
spectral analysis and wavelet transforms. Second-order
methods are based on the independence of the spectral
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components and the evolution of the spectrum in the time
domain. Other tools are threshold-based functions, linear
classifiers and Bayesian networks.

Some recent works bring a different strategy, based in
higher-order statistics (HOS), in dealing with the analysis
of transients within PQ analysis [4,5], and other fields of
Science [6–8]. Without perturbation, the 50-Hz of the volt-
age waveform exhibits a Gaussian behavior. Deviations
from Gaussianity can be detected and characterized via
HOS; non-Gaussian processes need third and fourth-order
statistical characterization in order to be recognized (com-
pletely characterized), because 2nd-order moments and
cumulants could be not capable of differentiate non-
Gaussian events.

The problem of differentiating between a transient of
long duration named oscillatory (within a signal period)
and a short duration transient, or impulsive transient
(25% of a cycle), falls into the set of HOS applicability.
The short transient could also bring the 50-Hz voltage to
zero instantly and, generally affects the sinusoid dramati-
cally. By the contrary, the long-duration transient could
be considered as a modulating signal (the 50-Hz signal is
the carrier), and is associated to load charges [2]. These
transients are intrinsically non-stationary, so it is neces-
sary a battery of observations (sample registers) to obtain
a reliable characterization.

The contribution of this paper consists of the applica-
tion of higher-order central cumulants to characterize PQ
events in the time-domain (measuring maxima and min-
ima values of higher-order cumulant sequences), along
with the use of a competitive layer as the classification
tool. Results reveal that two different clusters, associated
to both types of transients, can be recognized in the 2D
graph, attending to third and fourth-order characteriza-
tion. The successful results convey the idea that the phys-
ical underlying processes associated to the transients,
generate different types of deviations from the typical ef-
fects that the noise cause in the 50-Hz sinusoid voltage
waveform.

The paper is structured as follows. The following Sec-
tion 2 explains the fundamentals of the importance for
power quality monitoring. Higher-order statistics are out-
lined in Section 3. Competitive layers are summarized in
Section 4. Results are presented in Section 5. Finally, con-
clusions are drawn in Section 6.
2. The importance of power-quality characterization

As more and more electronic equipment enter the resi-
dential and business environment, the subjects related to
Power Quality (PQ) and its relationship to vulnerability of
installations is becoming an increasing concern to the
users. Particularly has increased the need to protect sensi-
tive electronic equipment from damaging over-voltages
[9,10].

Over-voltage is an RMS increase in the AC voltage, at the
power frequency, for durations greater than a few seconds
[11]. Over-voltage can be the result of a programmed
utility operation, or the effect of an external eventuality.
Under normal operating conditions, the steady-state
voltage is regulated by the utility within a limits band ac-
cepted by the EN-50160. Deviations from these limits are
rare, and the utility can actuate readily to correct them, if
known their occurrence, by acting on conventional distri-
bution technologies, such as tap-changing transformers
[12].

However, under the typical operating conditions of a
power system it is always possible the presence of damag-
ing momentary excess of voltage. Although by themselves
they would be described as ‘‘abnormal”, it is possible to
distinguish between surge and swell. A surge is an over-
voltage that can reach thousands of volts, lasting less than
one cycle of the power frequency, that is, less than 16 ms. A
swell is longer, up to a few seconds, but does not exceed
about twice the normal line voltage.

Power system surges, based on waveform shapes, can
be classified into ‘‘oscillatory transients” and ‘‘impulsive
transients” [1,3] and they are the goal of this research
work. Oscillatory transient surges show a damped oscilla-
tion with a frequency range from 400 Hz to 5 kHz or more.
Impulsive transient surges present a fast rise time in the
order of 1 ns–10 ls over the steady-state condition of volt-
age, current or both, that is unidirectional in polarity (pri-
marily either positive or negative), reaching hardly twice
the peak amplitude of the signal. They are damped quickly,
presenting a frequency range from 4 kHz to 5 MHz, occa-
sionally reaching 30 MHz.

Categorization of electrical transients based on wave-
form shapes and their underlying causes (or events) has
been studied in [2], and a few previous studies [4,5] using
HOS for feature extraction of electrical signals have shown
the possibility of distinguish transients based on details
beyond the second-order.

In the following Section 3 we present higher-order sta-
tistics in the time-domain in order to present the signal
processing tool, along with a basic example which shows
the performance of the statistical estimators which have
been used in the computation of the cumulants. This
example also motivates the use of HOS in time-series
characterization.
3. Higher-order statistics

3.1. Mathematical foundations

Higher-order cumulants are used to infer new proper-
ties about the data of non-Gaussian processes [6,13]. In
multiple-signal processing it is very common to define
the combinational relationship among the cumulants of r
stochastic signals, fxigi2½1;r�, and their moments of order
p; p 6 r, given by using the Leonov-Shiryaev formula
[14,15]

Cumðx1; � � � ; xrÞ ¼
P
ð�1Þp�1 � ðp� 1Þ! � Ef

Q
i2s1

xig

�Ef
Q
i2s2

xjg � � � Ef
Q
i2sp

xkg;
ð1Þ

where the addition operator is extended over all the parti-
tions, like one of the form ðs1; s2; . . . ; spÞ, p ¼ 1;2; � � � ; r; and
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ð1 6 i 6 p 6 rÞ; being si a set belonging to a partition of or-
der p, of the set of integers 1,. . .,r.

Let fxðtÞg be an rth-order stationary random real-valued
process. The rth-order cumulant is defined as the joint rth-
order cumulant of the random variables x(t), x(t + s1),. . .,
x(t + sr�1),

Cr;xðs1; s2; . . . ; sr�1Þ

¼ Cum½xðtÞ; xðt þ s1Þ; . . . ; xðt þ sr�1Þ�
ð2Þ

The second-, third- and fourth-order cumulants of zero-
mean x(t) can be expressed via [16]:

C2;xðsÞ ¼ EfxðtÞ � xðt þ sÞg ð3aÞ

C3;xðs1; s2Þ ¼ EfxðtÞ � xðt þ s1Þ � xðt þ s2Þg

C4;xðs1; s2; s3Þ
ð3bÞ

¼ EfxðtÞ � xðt þ s1Þ � xðt þ s2Þ � xðt þ s3Þg

�C2;xðs1ÞC2;xðs2 � s3Þ � C2;xðs2ÞC2;xðs3 � s1Þ

�C2;xðs3ÞC2;xðs1 � s2Þ
ð3cÞ

By putting s1 ¼ s2 ¼ s3 ¼ 0 in Eq. (3a), we obtain

c2;x ¼ Efx2ðtÞg ¼ C2;xð0Þ ð4aÞ

c3;x ¼ Efx3ðtÞg ¼ C3;xð0;0Þ ð4bÞ

c4;x ¼ Efx4ðtÞg � 3ðc2;xÞ
2 ¼ C4;xð0;0;0Þ ð4cÞ

The expressions in Eq. (4c) are measurements of the vari-
ance, skewness and kurtosis of the distribution in terms
of cumulants at zero lags (the central cumulants).

Normalized kurtosis and skewness are defined as
c4;x=ðc2;xÞ

2 and c3;x=ðc2;xÞ
3=2, respectively. We will use and

refer to normalized quantities because they are shift and
scale invariant. If xðtÞ is symmetrically distributed, its
skewness is necessarily zero (but not vice versa); if x(t) is
Gaussian distributed, its kurtosis is necessarily zero (but
not vice versa). In the experimental section, results are
obtained by using sliding cumulants, i.d. a moving window
in the time domain over which to compute the each
cumulant.

In practice, the computation of the cumulants and the
poly-spectra is based in estimates. For example, given an
N-sample signal vector xðnÞ; n ¼ 0; � � � ;N � 1, the following
expressions, Eq. (5)1, Eq. (6) and Eq. (7) describe three esti-
mates for the second, third and fourth-order cumulants,
respectively.

Ĉ2;xðsÞ ¼ Rx;unbiasedðsÞ ¼
1

N � s
XN�s

i¼1

½xðiÞ � �x�½xðiþ sÞ � �x�;

ð5Þ

Ĉ3;xðk; lÞ ¼ ^Cum½xðnÞ; xðnþ kÞ; xðnþ lÞ�

¼ 1
N

XN�1

n¼0

xðnÞxðnþ kÞxðnþ lÞ; ð6Þ
1 Unbiased autocorrelation.
Ĉ4;xðk; l;mÞ ¼ ^Cum½xðnÞ; xðnþ kÞ; xðnþ lÞ; xðnþmÞ�

¼ 1
N

XN�1

n¼0

xðnÞ � xðnþ kÞ� � xðnþ lÞ� � xðnþmÞ�

� 1
N2

XN�1

n¼0
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" # XN�1

n¼0
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" #

� 1
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n¼0
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� 1
N2

XN�1

n¼0

xðnÞ � xðnþmÞ�
" # XN�1

n¼0

xðnþ kÞ� � xðnþ lÞ�
" #

;

ð7Þ

where s is a generic time-lag, k; l; m 2 ½�v; :::; �1;
0;1; :::; þv�, and n ¼ 0;1; :::; N � 1; v is the index of the
maximum time shift (lag) between samples of a record.

Eq. (5) represents an unbiased estimator, while Eqs. (6)
and (7) represent biased estimates. If the total number of
terms averaged are considered in the denominator (e.g.
N � s), the estimator is unbiased. By the contrary, if the
number of sampled data (N) are considered, the estimator
is biased.

If different signals are involved Eq. (6) turns into Eq. (8):

Ĉx;y;zðk; lÞ ¼
1

N3

XN2

n¼N1

xðnÞyðnþ kÞzðnþ lÞ; ð8Þ

where N1 and N2 are chosen such that the summations in-
volve only signal components with n 2 [0, N)-1], and N is
the number of samples; unbiased estimates are obtained
if N3 is set equal to the actual number of terms which
are averaged.

3.2. An introductory example

To show the relevance of HOS a previous example is pre-
pared. Four noise processes: Gaussian; uniform; exponen-
tial and Laplacian, previously catalogued in [13], and
indistinguishable from the second-order perspective (auto-
correlation sequence), are presented in this subsection in or-
der to illustrate the importance of introducing higher-order
cumulants. The 4th-order cumulants are computed accord-
ing to the estimate given in Eq. (7). We consider a 2048-
point sample register for each random set of data. The four
identical autocorrelation sequences are drawn in Fig. 1.

If we look into the fourth-order sequences, substantial
differences are observed, specially those corresponding to
zero time lags. This can be seen in Fig. 2, where the
fourth-order cumulant sequences are depicted. The theo-
retical values of the cumulants at zero time-lag are: 0
(Gaussian), -1 (uniform), 6 (Exponential), 12 (Laplacian),
according to [13]. The difference between the theoretical
and the experimental value is due to the lack of averaging
(only one sample register is consider). The convergency of
the estimate is assured.

4. Competitive layers

The neurons in a competitive layer distribute them-
selves to recognize frequently presented input vectors.
The competitive transfer function accepts a net input
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vector p for a layer (each neuron competes to respond to p)
and returns neuron outputs of 0 for all neurons except for
the winner, the one associated with the most positive ele-
ment of net input. If all biases are 0, then the neuron whose
weight vector is closest to the input vector has the least
negative net input and, therefore, wins the competition
to output a 1.

The winning neuron will move closer to the input, after
this has been presented. The weights of the winning neu-
ron are adjusted with the Kohonen learning rule (0.9 in
the present case). Supposing that the ith-neuron wins,
the elements of the ith-row of the input weight matrix
(IW) are adjusted as shown in Eq. (9):

IW1;1
i ðqÞ ¼ IW1;1

i ðq� 1Þ þ a½pðqÞ � IW1;1
i ðq� 1Þ�; ð9Þ

where p is the input vector, q is the time instant, and a is
the learning rate. The neuron whose weight vector was
closest to the input vector is updated to be even closer.
The result is that the winning neuron is more likely to
win the competition the next time a similar input is pre-
sented. As more and more inputs are presented, each neu-
ron in the layer closest to a group of input vectors soon
adjusts its weights toward those inputs. Eventually, if there
are enough neurons, every cluster of similar input vectors
will have a neuron that outputs 1 when a vector in the
cluster is presented, while outputting a 0 at all other times.
Thus, the competitive network learns to categorize the in-
put vectors.

5. Experimental results

The aim is to differentiate between two classes of PQ
events, named long-duration (oscillatory) and short-dura-
tion (impulsive events). The experiment comprises two
stages. The feature extraction stage is based on the compu-
tation of cumulants. Each vector’s coordinate corresponds
to the local maxima and minima of the third and fourth-or-
der central cumulants. Secondly, the classification stage is
based on the application of the competitive layer to the
feature vectors. We use a two-neuron competitive layer,
which receives two-dimensional input feature vectors dur-
ing the network training.
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We analyze a number of 26,1000-point real-life
registers during the feature extraction stage. Before the
computation of the biased cumulants, two pre-processing
actions have been performed over the sample signals. First,
they have been normalized because they exhibit very
different-in-magnitude voltage levels. This disparity of
voltage levels cannot influence the results of the categori-
zation. Secondly, a high-pass digital filter (fifth-order But-
terworth model with a characteristic frequency of 150 Hz)
eliminates the low frequency components which are not
the targets of the experiment.

After pre-processing, a battery of sliding central biased
cumulants second, third and fourth) is calculated. Each
cumulant is computed over 50 points; this window’s length
(50 points) has been selected neither to be so long to cover
the whole signal nor to be very short. The algorithm calcu-
lates these three central cumulants over 50 points, and then
it jumps to the following starting point (next 50-point over-
lapped group); as a consequence we have 98% overlapping
sliding windows (49/50 = 0.98). Each computation over a
window (called a segment) outputs three cumulants (2nd,
third and fourth-orders).

Besides, each nth-order cumulant, Cumn;x½i�, associated
to the ith computation segment has been normalized by
ðCum2;x½i�Þn=2, in order to obtain categorization results asso-
ciated to the shape of the sliding cumulants. This gives a
real statistical characterization. If the cumulants are not
normalized, the maxima and minima also gather informa-
tion regarding the value of the cumulants. The higher-or-
der (n > 2) normalized cumulants are the skewness and
the kurtosis.

Fig. 3 shows the comparison between the analysis of an
oscillatory event and an impulsive event. The second-order
cumulant sequence corresponds to the variance, which
clearly indicates the presence of an event, due to the excess
of power. Both types of transients exhibit an increasing
variance in the neighborhood of the PQ event, that presents
the same shape, with only one maximum. The magnitude
of this maximum is by the way the only available feature
which can be used to distinguish different events from
the second-order point of view. This may suggest the use
of additional features in order to distinguish different types
of events. Higher-order results allow to differentiate be-
tween the transients.
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Fig. 4 shows the comparison of the former events in
Fig. 3 looking at the third and fourth-order cumulants.
Maxima and minima of the sliding higher-order cumulants
are selected as features from each sample register.

The results of the training stage (using the Kohonen
rule) are shown in Fig. 5 and in Fig. 6, for the third and
fourth-order sets of features, respectively. The horizontal
(vertical) axis corresponds to the maxima (minima) values.
Each cross in the diagram corresponds to an input vector
and the circles indicate the final location of the weight vec-
tor (after learning) for the two neurons of the competitive
layer. Before training, both weight vectors pointed to the
asterisk, which is the initializing point.

The separation between classes (inter-class distance) is
well defined in both 2-D feature graphs. Both types of PQ
events are clustered. The correct configuration of the
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clusters is corroborated during the simulation of the neural
network, in which we have obtained an approximate clas-
sification accuracy of 97%. During the simulation, new sig-
nals (randomly selected from our data base) were
processed using this methodology. The accuracy of the
classification results increases with the number of data.
To evaluate the confidence of the statistics a significance
test has been conducted. As a result, the number of mea-
surements is significantly correct.
6. Conclusion

In this paper we have proposed an automatic method to
detect and classify two PQ transients, named short and
long-duration. The method comprises two stages. The first
includes pre-processing (normalizing and filtering) and
outputs the 2-D feature vectors, each of which coordinate
corresponds to the maximum and minimum of the central
higher-order cumulants. The second stage uses a neural
network to classify the signals into two clusters. This stage
is different-in-nature from the one used in [5] consisting of
quadratic classifiers and was previously used in [4], with-
out having been normalized the cumulants. The configura-
tion of the clusters is assessed during the simulation of the
network, in which we have obtained acceptable classifica-
tion accuracy.
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