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Abstract

The analysis of oxygen desaturations is a basic variable in polysomnographic
studies for the diagnosis of sleep apnea. Several algorithms operating in
the time domain already exist for sleep apnea detection via pulse oximetry,
but in a disadvantageous way—they achieve either a high sensitivity or a
high specificity. The aim of this study was to assess whether an alternative
analysis of arterial oxygen saturation (SaO2) signals from overnight pulse
oximetry could yield essential information on the diagnosis of sleep apnea
hypopnea syndrome (SAHS). SaO2 signals from 117 subjects were analyzed.
The population was divided into a learning dataset (70 patients) and a test set
(47 patients). The learning set was used for tuning thresholds among the applied
Poincaré quantitative descriptors. Results showed that the presence of apnea
events in SAHS patients caused an increase in the SD1 Poincaré parameter.
This conclusion was assessed prospectively using the test dataset. 90.9%
sensitivity and 84.0% specificity were obtained in the test group. We conclude
that Poincaré analysis could be useful in the study of SAHS, contributing to
reduce the demand for polysomnographic studies in SAHS screening.

Keywords: apnea, SAHS, Poincaré, SaO2, oximetry

1. Introduction

Sleep breathing disorders are widely underdiagnosed (Kapur et al 2002, Endeshaw 2006,
Lettieri et al 2005). International Classification of Sleep Disorders (ICSD) classifies sleep
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apnea–hypopnea syndrome (SAHS) as a dysomnia (disorders of initiating and maintaining
sleep and disorders of excessive sleepiness) and more specifically as an intrinsic sleep disorder.
SAHS causes a not restful sleep and important daytime repercussions such as sleepiness and
psychiatric and cardiorespiratory secondary disorders (American Sleep Disorders Association
Task Force 1998).

Nowadays, diagnosis of SAHS is not easy. The whole process usually takes a long time
and requires complex diagnostic studies with a high cost.

Overnight full-channel polysomnography (PSG) remains the ‘gold standard’ for the
diagnosis of sleep apnea. It involves monitoring many body functions and performing a
comprehensive recording of the biophysiological changes that occur during sleep. Many
sensors need to be attached to the patient and a manual scoring of the recorded data performed
by specialists is required (Guilleminault and Stoohs 1990).

A significant number of apnea cases remain underdiagnosed. This situation drives to the
increasing interest in finding alternative approximations to (early) diagnosis.

Overnight pulse oximetry has opened the way for subsequent systematic investigations of
sleep apnea (Bloch 2003), and thus has been proposed as a simpler alternative to PSG in the
diagnosis of SAHS because it is readily available, it is cost effective and could be extended as
a screening method to overcome the large demand in sleep units (Whitelaw et al 2005, Epstein
and Dorlac 1998, Chesson et al 2003, Levy et al 1996). It can be used in a non-supervised
environment as it is the case of domiciliary applications.

There are many quantitative indices derived from overnight pulse oximetry in the diagnosis
of SAHS. The most widely used include the number of oxygen desaturations below a certain
threshold, usually 3% or 4% decline from baseline (Rauscher et al 1991, Rusch et al 1996), or
the cumulative time spent below a threshold of 90% (Martinez et al 2005, Grupo Español del
Sueño 2005). Based on time domain analysis, SAHS screening algorithms achieve either a high
sensitivity or a high specificity (Von Perleth et al 2003). This lack of reliability arises from the
no standardized definition of desaturation. This absence of a standard definition causes SAHS
screening algorithms via pulse oximetry differ within the method of desaturation detection
(Von Perleth et al 2003, Moser et al 1994). Three key definitions of apnea can be found.

• ODI-1: a decrease of at least 4% in arterial oxygen saturation in relation to a defined
baseline level (Rusch et al 1996). Baseline can be a fixed level (ODI-1A) or it can be
evaluated every 1 (ODI-1B) or 5 min (ODI-1C) with a moving average filter.

• ODI-2: oxygen desaturation of at least 4% in a time interval of 40 s (Rauscher et al 1991).

• ODI-3: detection of restoration phases in SaO2 of at least 3% in a time interval of 10 s
(Rauscher et al 1991).

As a conclusion, SAHS detection by time domain analysis is not as satisfactory as desired.
Some frequency (Zamarron et al 1999) or entropy (Hornero et al 2007) based approaches have
been tested to overcome this disappointment. In this study, the useful of Poincaré plot analysis
is evaluated.

Poincaré plot is a technique taken from nonlinear dynamics, developed by Henri Poincaré
for analyzing complex systems. It is a geometrical representation of a time series into a
Cartesian plane (Piskorski and Guzik 2007), where the values of each pair of successive
elements of the time series define a point in the plot. It has found its use in such diverse
fields as physics and astronomy, geophysics, meteorology, mathematical biology and medical
sciences (Ott 1993). In the context of medical sciences, it is mainly used for quantifying the
heart rate variability (HRV) becoming an effective measure of this marker (Brennan et al 2001,
Task Force of the ESC and NASPE 1996).
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The goal of this study was to assess whether an alternative Poincaré plot analysis of
arterial oxygen saturation (SaO2) signals from overnight pulse oximetry could yield essential
information on the diagnosis of SAHS.

2. Participants

Available data were acquired from a total of 117 adult subjects. They were randomly selected
as they were referred to the Sleep Unit of the Hospital Universitario Puerta del Mar de
Cadiz (Spain) suspected of suffering from OSAS. All of them had at least one the following
symptoms: excessive sleepiness, strong snoring, night awakenings or episodes of breathing
cessation during sleep.

A previous consent was signed by patients. Relating to gender distribution, there were
30 females and 87 males, with a mean age of 58.4 years. Mean ± standard deviation (SD) of
body mass index (BMI) was 31.4 ± 5.3 kg m−2.

Patients were evaluated by an overnight pulse oximetry test in conjunction
with a simultaneous standard in-laboratory overnight polysomnography (PSG). Signals
recorded included electroencephalogram, electrooculogram, submental and bilateral tibial
electromyogram, electrocardiogram, airflow (nasal thermistor), chest and abdominal piezo
bands, and body position. Data were collected and stored using the Standard Sleep Lab
Polysomnographic System from Jaeger. In particular, Jaeger Oximeter, model 70750A19,
with a finger probe and with a sampling frequency of eight samples per second was used.
Oximetry data were separately recorded for a later analysis.

The PSG operated according to the system by Rechtschaffen and Kales (1968). Apnea
was defined as the absence of airflow for more than 10 s, and hypopnea as a decrease in
respiratory flow of at least 50%, accompanied by a decrease of more than 4% in the saturation
of hemoglobin. The average apnea–hypopnea index (AHI) was calculated for hourly periods
of sleep. In this study, an AHI � 15 events per hour was considered as positive diagnostic of
SAHS.

Positive diagnosis of SAHS was confirmed in 54 out of 117 subjects. The subjects under
study were divided randomly into two groups: a learning group (70 subjects) and a test group
(47 subjects). The learning group was used to find the optimum Poincaré parameters in relation
to SAHS diagnosis and for tuning the thresholds for diagnosis. The calculated thresholds were
then applied to the test group. Table 1 summarizes the composition of both groups and the
clinical features for all subjects under study.

3. Methods

The Poincaré plot is a visual technique which can make use of the human eye’s ability to
recognize patterns. The Poincaré plot is a scattergram, which is constructed by plotting
each SaO2 value against the previous one. As this procedure was used for realistic data
such as arterial oxygen saturation (SaO2) vectors, shapes like those in figures 1 and 2 were
obtained.

The Poincaré plot may be analyzed quantitatively by some descriptors (Piskorski and
Guzik 2007). Fitting an ellipse to the Poincare plot’s shape is becoming an increasingly
popular technique.

As shown in figures 1 and 2, a set of axis oriented with the line of identity is defined. The
axes of the Poincaré plot are related to the new set of axes by a rotation of θ = π/4 radian,
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Table 1. Clinical features for all subjects and for the learning and test groups (mean ± SD).
SAHS+ include patients with a positive diagnosis of SAHS; SAHS− include patients with a
negative diagnosis of SAHS; BMI: body mass index; AHI: apnea-hypopnea index.

All SAHS+ SAHS−
All participants

Subjects 117 54 63
Age (years) 58.4 ± 10.5 59.2 ± 11.7 57.2 ± 12.0
Females (%) 25.6 22.2 28.5
BMI (kg m−2) 31.4 ± 5.3 32.1 ± 6.2 29.4 ± 5.5
Recording time (min) 317.1 ± 149.9 302.4 ± 143.2 329.9 ± 144.1
AHI 42.6 ± 26.2 6.6 ± 10.6

Learning group
Subjects 70 32 38
Age (years) 59.1 ± 9.8 59.9 ± 12.3 58.4 ± 6
Females (%) 23.4 25.0 28.9
BMI (kg m−2) 30.5 ± 6.4 34.8 ± 5.9 27.4 ± 6.4
Recording time (min) 317.4 ± 149.9 317.2 ± 147.8 317.3 ± 149.9
AHI 39.7 ± 17.9 7.6 ± 3.4

Test group
Subjects 47 22 25
Age (years) 58.1 ± 12.5 58.9 ± 11.4 58.2 ± 9.8
Females (%) 25.5 18.2 28.0
BMI (kg m−2) 32.2 ± 7.4 32.4 ± 6.5 30.4 ± 6.3
Recording time (min) 317.1 ± 135.6 306.8 ± 138.8 329.2 ± 136.7
AHI 43.6 ± 20.6 7.2 ± 4.1

according to the rotation matrix defined as[
X

Y

]
=

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

] [
SaO2 n

SaO2 n+1

]
. (1)

In the reference system of the new axes, SD1 quantify the width of the Poincaré cloud and
it is measured as the standard deviation around the Y-axis. It indicates the level of short-term
variability of the SaO2 signal. SD2 is defined as the standard deviation around the X-axis
(Guzik et al 2006). SD2 is the length of the Poincaré cloud and it is related to the long-term
variability of the SaO2 signal. SD1 and SD2 allow fitting an ellipse to the cloud.

Additionally, we may define a parameter which reflects the area of the previously defined
ellipse (Guzik et al 2006):

A = 2πSD1SD2. (2)

Some researchers have employed the correlation coefficient of the Poincaré plot
(Otzenberger et al 1998). The correlation coefficient can be expressed in terms of SD1

and SD2 indices as

r = SD2
2 − SD2

1

SD2
2 + SD2

1

. (3)

Finally, the ratio R = SD2/SD1 will be also studied.
It is remarkable that although the Poincaré plot displays nonlinear aspects of the interval

sequence, most of the previously defined indices are linear measures (Brennan et al 2001,
Task Force of the ESC and NASPE 1996).
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Figure 1. The Poincaré plot of an 8 h recording of arterial oxygen saturation, previous to the mean
removal, of a healthy subject with an apnea hypopnea index (AHI) = 4. SD1 and SD2 determine
the width and length of the fitted ellipse.

In this study, SaO2 signals were recorded at the hospital with a sampling rate of eight
samples per second. Before processing, each SaO2 signal was decimated using a 30th-order
lowpass FIR filter. Oxygen saturation changes have a low dynamic, so one sample per second
is an adequate sampling rate. Some studies carried out (Warley et al 1987) showed that this
sampling rate or even lower frequency (one sample every 5 s) provides reasonable resolution
in SaO2 variability.

Each oximetry recording was firstly scanned to remove artifacts and drops to zero due
to poor contact from the finger probe or patient movements. Values above or below 6% of
precedent were replaced by the average value in the 10 s before. Zero-valued samples were
excluded from the signal. The calculated vector was filtered using an average mobile filter, in
order to reduce noise during the acquisition process. Mean was then removed from the SaO2

vectors.
For signal processing, statistics and other processing, and graphical representation, the

MathWorks MATLAB R© software was used.
The parameters SD1, SD2, r, R and A were calculated from the pre-processed SaO2 signals.

In order to test the accuracy of these indices for differentiating SAHS-positive and -negative
patients, a preliminary statistical processing was applied. A wide variety of mathematical
methods exist for determining whether the means of different groups are statistically different.
First, the chi-square test for normal distribution was applied. The results rejected normality
(P < 0.0001) so non-parametric tests should be used for checking statistical significance
(figure 3). The Mann–Whitney non-parametric U-test assesses whether the means of two
groups are statistically different from each other. This test was used for calculating the
significance level for each of the Poincaré descriptors.
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Figure 2. The Poincaré plot of an 8 h recording of arterial oxygen saturation, previous to the mean
removal, of a SAHS positive patient with an apnea hypopnea index (AHI) = 87. SD1 and SD2
determine the width and length of the fitted ellipse.

Figure 3. Histogram of SD1 values in the learning group. The chi-square test rejected normality
in distribution, as can be appreciated (normal distribution appears marked with dots). The same
happened to all analyzed parameters.
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Table 2. Poincaré indices estimated from SaO2 signals of subjects in the learning group. Data are
presented as mean ± SD. SAHS+ include patients with a positive diagnosis of SAHS; SAHS−
include patients with a negative diagnosis of SAHS. SD1 and SD2 are measured as arterial
hemoglobin oxygen saturation percentages

Two-tailed probability
Indices SAHS+ SAHS− (Mann–Whitney test)

SD1 (percentage) 0.23 ± 0.11 0.11 ± 0.05 P < 0.0001
SD2 (percentage) 3.96 ± 2.02 2.07 ± 1.02 P < 0.0001
A (squared percentage) 6.82 ± 6.23 1.68 ± 1.73 P < 0.0001
r 0.99 ± 0.00 0.99 ± 0.00 P = 0.2050
R 0.06 ± 0.01 0.05 ± 0.01 P = 0.1589

Table 3. Optimum thresholds, area under the ROC curve (AUC), standard error (SE), 95%
confidence intervals (95% CI), sensitivity (Se) and specificity (Sp) calculated for the selected
descriptors.

Indices Threshold AUC SE 95% CI Se (%) Sp (%)

SD1 (percentage) 0.13 0.87 0.045 0.77–0.94 84.4 81.6
SD2 (percentage) 2.03 0.84 0.050 0.73–0.92 96.9 65.8
A (squared percentage) 1.56 0.87 0.045 0.77–0.94 96.9 71.1

4. Results

4.1. Learning phase

The results obtained on the learning group are presented in table 2. Poincaré indices were
calculated from the SaO2 signals in the learning group in order to compare results from
subjects with positive and negative SAHS diagnosis. Significant differences (P < 0.05) with
the Mann–Whitney non-parametric U-test were achieved, except for the correlation coefficient
(r) and for the ratio SD1/SD2 (R).

In consequence, the accuracy of the parameters SD1, SD2 and A, for differentiating SAHS
positive and negative patients, was studied. In the learning group, the optimum threshold
was selected in each case to improve the sensitivity/specificity pair according to the receiver
operating characteristic (ROC) plots (Zweig and Campbell 1993). Matlab software was used.
A routine was programmed for an automatically optimum threshold selection, calculating the
sensitivity/specificity pair for different cutoff points and finding the best value. The optimum
value was determined as being the point closest to the left top point (100% sensitivity and
100% specificity).

Figure 4 shows the ROC curves for the learning set. Table 3 includes ROC parameters for
the analyzed descriptors. It can be appreciated that the best area under ROC curve corresponds
to SD1 as well as the high sensitivity/specificity pair and the lowest standard error.

A pairwise comparison of ROC curves can be appreciated in table 4, where the differences
between areas, error and significant levels are one-to-one compared.

Values for subjects in the learning group with positive and negative SAHS diagnosis are
shown in figure 5. The optimum cutoff point is represented in each case. It can be appreciated
that patients without SAHS had lower SD1 values (0.11 ± 0.05%) than patients in the positive
group (0.23 ± 0.11%).
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Figure 4. ROC curves for the analyzed Poincaré descriptors calculated from SaO2 signals in the
learning group for the diagnosis of SAHS. The symbol • indicates the optimum threshold.

Table 4. Comparison of ROC curves. DBA: difference between areas; SE: standard error; 95%
CI: 95% confidence interval; SL: significance level. SD1 and SD2 units are percentages. A is
measured as a squared percentage.

Indices DBA SE 95% CI SL

SD1 versus SD2 0.03 0.03 −0.03 to 0.10 P = 0.28
SD1 versus A 0.00 0.02 −0.03 to 0.03 P = 0.90
SD2 versus A 0.03 0.02 0.00 to 0.07 P = 0.09

To assess the improvement provided by the proposed algorithms, the classification
performance of the Poincaré descriptors was compared with that reached by means of the
previously detailed classic oximetry indices. Algorithms for calculating the indices ODI-1A,
ODI-1B, ODI-1C, ODI-2, and ODI-3 were programmed. As previously described, the threshold
for each of these indices was selected from the training set to improve the sensitivity/specificity
pair according to the ROC plots, as can be appreciated in figure 6. The thresholds that provided
the highest accuracy (minimal false negative and false positive results) on the training set were
selected as optimum. A threshold value of 4.7 events h−1, 3.5 events h−1, 5 events h−1,
8.9 events h−1 and 6.4 events h−1 was established for ODI-1A, ODI-1B, ODI-1C, ODI-2 and
ODI-3, respectively. Table 5 includes ROC parameters for the classic descriptors.

4.2. Test phase

The parameters calculated from the learning phase were used in the test group. Features of the
descriptors for the test group are shown in table 6. Figure 7 shows the ROC curves for the test
set. Figure 8 shows values for the positive and negative subjects in the test group, including
the optimum cutoff point previously calculated.

Again, SD1 values for the SAHS negative group were lower (0.11 ± 0.05%) than those
for patients in the positive group (0.30 ± 0.27%) for the test group. These results corroborate
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(a)

(c)

(b)

Figure 5. SD1 (a), SD2 (b) and A (c) values for the SAHS positive and negative subjects in the
learning group. The optimum cutoff point is represented as a continuous line for every case. SD1
and SD2 units are percentages. A is measured as a squared percentage.

Table 5. Optimum thresholds, area under the ROC curve (AUC), standard error (SE), 95%
confidence intervals (95% CI), sensitivity (Se) and specificity (Sp) calculated for ODI classical
descriptors in the learning set.

Indices Threshold AUC SE 95% CI Se (%) Sp (%)

ODI-1A 4.70 0.88 0.042 0.71–0.96 87.1 78.2
ODI-1B 3.50 0.86 0.045 0.63–0.92 81.3 78.1
ODI-1C 5.00 0.88 0.045 0.75–0.97 89.1 76.0
ODI-2 8.90 0.89 0.041 0.79–0.99 90.0 77.2
ODI-3 6.40 0.86 0.045 0.62–0.90 87.2 78.3

that SD1 is higher in SAHS positive patients and lower in healthy subjects. A sensitivity of
90.9%, a specificity of 84.0% and an area under curve of 0.95 were achieved (table 7).

Although the average values of the parameters SD2 and A seem different between
populations with positive and negative SAHS, their high standard deviation do foresee that
their efficiency in diagnosis will be poor.

The five classical indices provided high sensitivity and low specificity. As it can be
appreciated in table 7, the best AUC value was obtained by means of ODI-2 and ODI-3, with
0.94. The best performance between the Poincaré parameters is given by SD1. Sensitivity,
specificity, accuracy and AUC achieved by the classical indices were outperformed by the SD1

descriptor.
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Figure 6. ROC curve for the classic oximetry indices, calculated from SaO2 signals in the learning
group for the diagnosis of SAHS. The symbol • indicates the optimum threshold.

Figure 7. ROC curves computed on the test set for the SD1 Poincaré descriptor and classic
oximetry indices.

5. Discussion

Oximeter has now become one of the most widely used biomedical sensors. Many authors
define pulse oximetry as the fifth vital indicator (Mower et al 1997). Particularly in the
diagnosis of sleep apnea, it is basic in respiratory event detection.
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(a)

(c)

(b)

Figure 8. SD1 (a), SD2 (b) and A (c) values for the SAHS positive and negative subjects in the
test group. The cutoff point, tuned in the learning phase, is depicted as a continuous line for every
case.

Table 6. Poincaré descriptors estimated from SaO2 signals of subjects in the test group. Data are
presented as mean ± SD. SAHS+ include patients with a positive diagnosis of SAHS; SAHS−
include patients with a negative diagnosis of SAHS. SD1 and SD2 units are percentages. A is
measured as a squared percentage.

Descriptor SAHS+ SAHS−
SD1 0.30 ± 0.27 0.11 ± 0.05
SD2 5.72 ± 3.49 2.16 ± 0.92
A 18.97 ± 20.78 1.67 ± 1.36

Due to the need for reliable SAHS screening systems, many SAHS screening algorithms
based on pulse oximetry have been proposed. Classic oximetry indices facilitate SaO2 analysis.
Oximeters can provide a measure of ODI-1A, ODI-1B, ODI-1C, ODI-2 and ODI-3. Several
studies where the diagnostic capability of these indices was assessed have been reviewed
(Rusch et al 1996, Rauscher et al 1991). The reported values of sensitivity ranged from 30%
to 98% and of specificity, from 41% to 100%. Most of the SAHS screening algorithms using
oximetry are based on this classic time domain analysis, but frequency (Zamarron et al 1999)
and nonlinear, based on approximate entropy (Hornero et al 2007) or neural networks (Marcos
et al 2008), can also be found. In these studies, the sensitivity of the test ranged from 71.3%
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Table 7. Results provided on the test set by the Poincaré descriptors and the classic oximetry
indices. SE: sensitivity; Sp: specificity; AUC: area under ROC curve; SE: standard error; +LR:
positive likelihood ratio; −LR: negative likelihood ratio; ODI-1A: oxygen desaturation over a 4%
fixed baseline; ODI-1B: oxygen desaturation over a 1 min 4% mobile baseline; ODI-1C: oxygen
desaturation over a 5 min 4% mobile baseline; ODI-2: oxygen desaturation over 4% in time
intervals of 40 s; ODI-3: oxygen desaturation over 3% restoration phases in time interval of 10 s.
SD1 and SD2 units are percentages. A is measured as a squared percentage.

Descriptor Se (%) Sp (%) AUC SE +LR −LR

SD1 90.91 84.00 0.95 0.035 5.68 0.11
SD2 95.45 56.00 0.87 0.050 2.17 0.08
A 95.45 64.00 0.90 0.050 2.65 0.07
ODI-1A 95.45 72.00 0.93 0.043 3.41 0.06
ODI-1B 95.45 72.00 0.93 0.044 3.41 0.06
ODI-1C 95.45 72.00 0.91 0.042 3.20 0.06
ODI-2 95.45 64.00 0.94 0.042 2.65 0.07
ODI-3 95.45 60.00 0.94 0.046 2.39 0.08

(Chiner et al 1999) to 90.2% (Levy et al 1996) and the specificity ranged from 64% (Baltzan
et al 2000) to 75% (Levy et al 1996) for AHI = 15 as an upper limit of non-SAHS diagnosis.

But a few studies have been published on the relationship between the variability SaO2

signal and SAHS. Some authors have used related methodologies, such as central tendency
measure (Marcos et al 2008) or the delta index (Levy et al 1996, Olson et al 1999, Magalang
et al 2003). The first study about quantifying arterial oxygen saturation (SaO2) variability
for SAHS diagnosis deserves a special mention. It was performed in Levy et al (1996). The
delta index (average of absolute deviations from the mean) was used over a sampling of 300
patients. Conclusions were that a nocturnal oximetry test with a delta index below 0.6 could
be helpful in ruling out the diagnosis of SAHS in patients being screened for this condition.
A sensitivity of 98% was achieved but with a poor specificity (46%). An alternative operating
point was analyzed. Using a delta value of 0.8 led to sensitivity of 90% but with a higher
specificity of 75%.

In this study, the SaO2 signals from 117 subjects were analyzed by using a new approach,
based on the Poincaré plot analysis.

The whole group was divided into two subgroups: a learning set with 70 subjects (32
patients with SAHS and 38 healthy subjects) and a test set with 47 subjects (22 patients with
SAHS and 25 healthy subjects). The learning group was used to find the useful Poincaré
descriptors and for tuning the optimum threshold for the selected parameters in relation to
SAHS diagnosis. SD1, SD2 and the area of the fitted ellipse (A) were selected among the
proposed descriptors. Optimum cutoff values of 0.13%, 2.03% and 1.56 (squared percent),
respectively, were calculated.

The application of the results in the learning group to the test set emphasizes the diagnosis
accuracy of the SD1 descriptor (90.91% sensitivity and 84.00% specificity) with an AUC of
0.95. Thus, the proposed algorithm achieves sensitivity, specificity and accuracy similar to
that provided by classic oximetry indices, as it can be observed from the results achieved in
the test set (table 7).

Sensitivity is the critical parameter in medical diagnosis. The penalty for misclassifying
an OSAS-positive subject is greater than that for misclassifying an OSAS-negative. Here, SD1

provides sensitivity above 90%.
The AHI thresholds are still a problem. No standard criterion exists and used values vary

from 5 to 20 events per hour to denote SAHS-positive diagnosis. This fact makes it impossible
to strictly compare many existing algorithms and techniques with our study. It is possible
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to find some approaches with either a high sensitivity or a high specificity. In our study, we
generated and presented a method characterized by a high sensitivity–specificity pair.

Finding the best balance between sensitivity and specificity depends on the selection of
the thresholds. ROC analysis allows the selection of thresholds. In this sense, the advantages
of the proposed approach can be demonstrated by fixing sensitivity (number of subjects with
SAHS correctly identified by the algorithm) and comparing the caseloads and specificities of
the new and the classical techniques.

On the basis of the receiver operating curves in figure 7, a caseload of 84% is required
to achieve 90% sensitivity using the Poincaré proposed descriptor, while a caseload of 71%,
65%, 76%, 78% and 73% is needed to achieve the same sensitivity using the classical ODI-1A,
ODI-1B, ODI-1C, ODI-2 and ODI-3 oximetry indices, respectively.

On the background, our findings indicate that Poincaré analysis provides greater variability
values in SaO2 signals corresponding to SAHS-positive patients compared to variability in
SAHS-negative subjects. In SAHS, oxygen desaturations associated with respiratory events
cause fluctuations in the oxygen saturation signal leading to higher Poincaré indices values.

Here, we must clearly distinguish the concepts of variability in the short and long term.
Cyclical oxygen desaturations associated with respiratory events, classical in SAHS patients,
cause short-term variability. Healthy patients of SAHS do not show abrupt changes in their
oximetric levels. Otherwise, sudden downturns in oximetry values continued with relatively
fast recoveries are characteristics of apneics. Respiratory patterns for a patient with apneic
syndrome show apneas with a typical saw-tooth morphology of the pulse oximetry curve. This
phenomenon reflects into values related to short-term variability indices (SD1) lower than that
for SAHS patients.

On the other hand, oxygen desaturation during sleep is greater during rapid eye movement
(REM) sleep compared with non-REM sleep. During first part of the night, oxygen saturation
may remain in the normal range (i.e. different from the subsequent hours) if a patient does
not go to sleep or has very little sleep during the first hour, as normal in healthy subjects. On
the other hand, oxygen saturation is expected to decrease right from the beginning in a patient
who has reduced sleep latency and, hence, early onset of apneas.

Oxygen desaturation is expected to increase with night because of the higher percentage
of REM sleep during this time. It has been shown that the mean apneic duration and the sleep
time spent in the apneic state increase as the night progresses (Orr et al 1979, Charbonneau
et al 1994).

Behind these circumstances is the increase observed in SaO2 variability and expressed
through the Poincaré parameters.

A significant contribution in our study is the comparison of many methods over the same
database. Analysis of older methods for different thresholds is useful as other methods do not
report exploratory analysis about sensitivity and specificity.

Although the results achieved with the proposed algorithm are very similar to those
achievable by common techniques applied to conventional oximeters in the market, we should
remark the double additional potential for this approach. First, it provides a tool that allows a
quick visual identification of the reality of the patient (Poincaré plots of subjects with SAHS
are quite different compared to those of patients without) and second, this method would allow
a possible insight into short-term and long-term variability SaO2. It must not be forgotten that
the aim of the nocturnal oximetry for the diagnosis of SAHS is the reduction in the number
of polysomnography tests in sleep units, and the proposed method can be useful in addressing
this objective.

The obtained results can be conditioned by some factors. Several conditions adversely
affect pulse oximetry readings during sleep (Kelleher 1989). SaO2 of zero may be acquired,
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due to the fact that the probe is not plugged into unit, the probe is not properly placed on
patient or light transmission is blocked (e.g. blue or black nail polish). The recording of an
erratic signal is also common due to poor perfusion, motion artifact, unstable hemodynamics
(irregular pulse) or dyshemoglobinemia.

Motion artifacts can interfere with signal detection and interpretation of the signal by the
device because of an unstable waveform. Improperly seated sensors, shivering or seizures
can cause movement, creating an inaccurate reading. Adjustment of the device to a longer
signal-averaging time may reduce the effects of motion artifact (Barker and Tremper 1987).

In our study, a method for removing some of the previously detailed artifacts was
implemented but some other items need to be taken into account. The main question is
related to supervision during data collections. All data in our study were collected at a sleep
unit, under supervised methods. In relation to this question, a deeper study in non-supervised
environments needs to be developed. Oximetry test for the detection of SAHS is often
developed in the homes of patients without medical supervision. Thus, it is important to take
into account the percentage of failed experiments by a defective action of the patient.

In summary, in the present study, we applied the Poincaré plot analysis looking for
differences in variability between SAHS-positive and SAHS-negative patients. Our study is
aimed to estimate the variability of overnight oximetric recording by means of Poincaré
descriptors, in order to assess its utility in SAHS diagnosis. It was corroborated that
desaturation events in SAHS patients caused fluctuations in SaO2 levels leading to higher
SD1 values. SD1, the dispersion of points perpendicular to the line-of-identity in the Poincaré
plot, reflects the level of short-term variability.

Thus, the proposed method estimates the short-term SaO2 signal variability with a low
computational cost and provides both high sensitivity and specificity values. It also has high
predictive values.

To our knowledge, this is the first study using the Poincaré plot analysis, commonly used
in HRV analysis, in application to SAHS diagnosis with the SaO2 variable. We assessed its
usefulness to physicians in screening for sleep apnea syndrome, comparing it with classical
oximetric indices, so the technique could be used as a supplementary method in a domiciliary
approach to SAHS diagnosis.

However, and although the results were significant, further work is required to test the
potential value of the proposed technique. First, algorithms have to be validated with a larger
group of patients. Second, results should be taken with caution because of the limitations
of the study. There is no doubt, from the clinical point of view, that there is an increased
variability of SaO2 signal in patients with apnea. However, it may be true that some of the
measured SaO2 variability is secondary to the applied method and is strongly related to the
heart rate.

Finally, the results could be even better by focusing on a multivariate analysis approach.
A combination of linear and non-linear parameters from SaO2 signals addresses an interesting
research line, so studies need to be developed.
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