
Commun Nonlinear Sci Numer Simulat 14 (2009) 3250–3257
Contents lists available at ScienceDirect

Commun Nonlinear Sci Numer Simulat

journal homepage: www.elsevier .com/locate /cnsns
Symmetries for a family of Boussinesq equations with nonlinear dispersion

M.S. Bruzón *, M.L. Gandarias
Departamento de Matemáticas, Universidad de Cádiz, Puerto Real, Cádiz 11510, Spain
a r t i c l e i n f o

Article history:
Received 23 December 2008
Accepted 9 January 2009
Available online 19 January 2009

PACS:
02.30.Jr
02.20.Sv

Keywords:
Exact solutions
Nonclassical symmetries
Potential symmetries
Hidden symmetries
1007-5704/$ - see front matter � 2009 Elsevier B.V
doi:10.1016/j.cnsns.2009.01.005

* Corresponding author.
E-mail address: matematicas.casem@uca.es (M.S
a b s t r a c t

In this paper, we make a full analysis of a family of Boussinesq equations which include
nonlinear dispersion by using the classical Lie method of infinitesimals. We consider trav-
elling wave reductions and we present some explicit solutions: solitons and compactons.

For this family, we derive nonclassical and potential symmetries. We prove that the non-
classical method applied to these equations leads to new symmetries, which cannot be
obtained by Lie classical method. We write the equations in a conserved form and we
obtain a new class of nonlocal symmetries. We also obtain some Type-II hidden symme-
tries of a Boussinesq equation.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The Boussinesq equation, which belongs to the KdV family of equations and describes motions of long waves in shallow
water under gravity propagating in both directions, is given by
utt ¼ uxx þ cuxxxx þ ðu2Þxx ¼ 0; ð1Þ
where u ¼ uðx; tÞ is a sufficiently often differentiable function, which for c ¼ �1 gives the good Boussinesq or well-posed
equation, while for c ¼ 1 the bad or ill-posed classical equation [4,5].

In [15], Rosenau extended the Boussinesq equation to include nonlinear dispersion to the effect that the new equations
support compact and semi-compact solitary structures in higher dimensions,
utt ¼ auxx þ ðumþ1Þxx þ b½uðumÞxx�xx; ð2Þ
where a and b are arbitrary constants. Eq. (2) describe for a ¼ 0 the vibrations of a purely an harmonic lattice and support
travelling structures with a compact support [15,16].

One of the most useful point transformations are those which form a continuous group. Lie classical symmetries admitted
by nonlinear partial differential equations (PDEs) are useful for finding invariant solutions. In [6], we studied similarity
reductions of the generalized Boussinesq equation (2), with a, b, m arbitrary constants and m–0. Motivated by the fact that
symmetry reductions for many PDEs are known that are not obtained by using the classical Lie method there have been sev-
eral generalizations of the classical Lie group method for symmetry reductions. Bluman and Cole [2], in their study of sym-
metry reductions of the linear heat equation, proposed the so-called nonclassical method of group-invariant solutions. In [3],
. All rights reserved.

. Bruzón).

mailto:matematicas.casem@uca.es
http://www.sciencedirect.com/science/journal/10075704
http://www.elsevier.com/locate/cnsns


M.S. Bruzón, M.L. Gandarias / Commun Nonlinear Sci Numer Simulat 14 (2009) 3250–3257 3251
Bluman introduced a method to find a new class of symmetries for a PDE when it can be written in a conserved form. These
symmetries are nonlocal symmetries which are called potential symmetries. In [11], Gandarias introduced a new classes of
symmetries for a PDE, which can be written in the form of conservation laws. These symmetries, called nonclassical potential
symmetries, are realized as nonclassical symmetries of an associated system.

In [10], Clarkson obtained some nonclassical symmetry reductions and exact solutions for a Boussinesq equation. Ganda-
rias and Bruzón [13] applied the Lie group and the nonclassical method to deduce symmetries for another Boussinesq
equation.

Two possible methods have been identified in [1] for finding possible PDEs the symmetries of which are inherited in a
transformation. In [12], Gandarias proposed to have as differential constraint the side condition from which the reduction
has been derived and to derive weak symmetries, that is, Lie classical symmetries of the original equation and the side
condition.

The aim of this paper is to make a full analysis of Eq. (2), by using classical symmetries, nonclassical symmetries and non-
classical potential symmetries, and to obtain new solutions. We also obtain some Type-II hidden symmetries of Eq. (2) with
m ¼ 1 and a ¼ k2.

2. Classical symmetries

To apply the classical method to (2), we consider the one-parameter Lie group of infinitesimal transformations in ðx; t;uÞ
given by
x� ¼ xþ �nðx; t; uÞ þ Oð�2Þ; ð3Þ
t� ¼ t þ �sðx; t;uÞ þ Oð�2Þ;
u� ¼ uþ �gðx; t;uÞ þ Oð�2Þ;
where � is the group parameter. Then, we require that this transformation leaves invariant the set of solutions of (2). This
yields to an overdetermined, linear system of equations for the infinitesimals nðx; t;uÞ; sðx; t;uÞ and gðx; t;uÞ: The associated
Lie algebra of infinitesimal symmetries is the set of vector fields of the form
V ¼ nðx; t; uÞ o

ox
þ sðx; t; uÞ o

ot
þ gðx; t;uÞ o

ou
: ð4Þ
We consider the classical Lie group symmetry analysis of Eq. (2). Invariance of Eq. (2) under a Lie group of point transfor-
mations with infinitesimal generator (19) leads to the following set of twenty seven determining equations.

The solutions of this system depend on the constants of the equation:

Case 1. If a, b and m are arbitrary constants, the only symmetries admitted by (2) are the group of space and time trans-
lations, which are defined by the infinitesimal generators
V1 ¼
o

ox
; V2 ¼

o

ot
:

In the following cases, we obtain extras symmetry, and these symmetry are defined by the following infinitesimal
generators:
Case 2. If a is arbitrary and m ¼ �1, V1, V2 and
V1
3 ¼ x

o

ox
þ t

o

ot
� 2u

o

ou
:

Case 3. If m is arbitrary and a ¼ 0, V1, V2 and
V2
3 ¼ t

o

ot
� 2u

m
o

ou
:

Case 4. If a ¼ 0 and m ¼ �1, V1, V2, V2
3 and
V4 ¼ x
o

ox
� 4u

o

ou
:

2.1. Optimal system and symmetry reductions

In order to determine solutions of PDE (2) that are not equivalent by the action of the group, we must calculate the one-
dimensional optimal system [14]. The generators of the nontrivial one-dimensional optimal system are the set of
subalgebras:
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Case 2.
V1; V2; V1 þ V2; V1
3:
Case 3.
V1; V2; V1 þ V2; V2
3; V1 þ V2

3:
Case 4.
V1; V2; V2
3; V4; V1 þ V2; V1 þ V4; V2 þ V3

3; V3
3 þ V4:
Having determined the optimal system, the symmetry variables are found by solving the invariant surface condition
U � n
ou
ox
þ s ou

ot
� g ¼ 0: ð5Þ
In case 1, for V1 þ V2, we obtain travelling wave reductions
z ¼ lx� kt; u ¼ hðzÞ;
where hðzÞ satisfies
bml4hmþ3h
0000
þ ð4bhmþ2h0m2 � 2bhmþ2h0mÞl4h000 þ ð�h3k2 þ ð6bhmþ1ðh0Þ2m3 � 11bhmþ1ðh0Þ2m2

þ 5bhmþ1ðh0Þ2mÞl4 þ ðhmþ3mþ hmþ3 þ ah3Þl2Þh00 þ ðbhmðh0Þ4m4 � 4bhmðh0Þ4m3 þ 5bhmðh0Þ4m2

� 2bhmðh0Þ4mÞl4 þ ð3bhmþ2m2 � 2bhmþ2mÞl4ðh00Þ2 þ ðhmþ2ðh0Þ2m2 þ hmþ2ðh0Þ2mÞl2 ¼ 0: ð6Þ
Since Eq. (2) has additional symmetries and the reductions that correspond to V1 and V2 have already been derived, we must
only determine the similarity variables and similarity solutions corresponding to the remaining generators:

� For V1
3:
z ¼ x
t
; u ¼ t�2hðzÞ;
where hðzÞ satisfies the ODE
bh3h
0000
þ z2h4h00 þ 6zh4h0 � 6bh2h0h000 � 5bh2ðh00Þ2 þ 22bhðh0Þ2h00 � ah4h00 � 12bðh0Þ4 þ 6h5 ¼ 0: ð7Þ
� For V2
3:
z ¼ x; u ¼ t�2=mhðzÞ;
where hðzÞ satisfies the ODE
� bhmðh0Þ4m6 � hmð6bhðh0Þ2h00 � 4bðh0Þ4Þm5 � hmð4bh2h0h000 þ 3bh2ðh00Þ2 � 11bhðh0Þ2h00 þ 5bðh0Þ4

þ h2ðh0Þ2Þm4 � hmðbh3h
0000
� 2bh2h0h000 � 2bh2ðh00Þ2 þ ð5bhðh0Þ2 þ h3Þh00 � 2bðh0Þ4 þ h2ðh0Þ2Þm3

� hmþ3h00m2 þ 2h4mþ 4h4 ¼ 0:
� For V1 þ V2
3:
z ¼ x� lnðtÞ; u ¼ t�2=mhðzÞ;
where hðzÞ satisfies the ODE
� bhmðh0Þ4m6 � 6bhmþ1ðh0Þ2h00m5 þ 4bhmðh0Þ4m5 � 4bhmþ2h0h000m4 � 3bhmþ2ðh00Þ2m4

þ 11bhmþ1ðh0Þ2h00m4 � 5bhmðh0Þ4m4 � hmþ2ðh0Þ2m4 � bhmþ3h
0000

m3 þ 2bhmþ2h0h000m3

þ 2bhmþ2ðh00Þ2m3 � hmþ3h00m3 � 5bhmþ1ðh0Þ2h00m3 þ 2bhmðh0Þ4m3 � hmþ2ðh0Þ2m3

� hmþ3h00m2 � h3h00m2 � h3h0m2 � 4h3h0m� 2h4m� 4h4 ¼ 0:
� For V2 þ V4:
z ¼ xe�t ; u ¼ e�4thðzÞ;
where hðzÞ satisfies the ODE
bh3h
0000
þ h4h00z2 þ 9h4h0z� 6bh2h0h000 � 5bh2ðh00Þ2 þ 22bhðh0Þ2h00 � 12bðh0Þ4 þ 16h5 ¼ 0: ð8Þ



M.S. Bruzón, M.L. Gandarias / Commun Nonlinear Sci Numer Simulat 14 (2009) 3250–3257 3253
2.2. Travelling wave solutions

From Eq. (6), we can obtain some exact solutions of Eq. (2) for a ¼ k
l

� �2
:

� If b ¼ 1
l2,
uðx; tÞ ¼ sin
1
mðlx� ktÞ; uðx; tÞ ¼ cos

1
mðlx� ktÞ: ð9Þ
� If b ¼ � 1
l2,
uðx; tÞ ¼ sinh
1
mðlx� ktÞ; uðx; tÞ ¼ cosh

1
mðlx� ktÞ ð10Þ
� If m ¼ �1,
uðx; tÞ ¼ cscðlx� ktÞ; uðx; tÞ ¼ secðlx� ktÞ;
uðx; tÞ ¼ cschðlx� ktÞ; uðx; tÞ ¼ sechðlx� ktÞ

ð11Þ
� If b ¼ 1
16l2,
- If m ¼ �2,

uðx; tÞ ¼ csc2ðlx� ktÞ; uðx; tÞ ¼ sec2ðlx� ktÞ: ð12Þ

-If m ¼ � 2
3,

uðx; tÞ ¼ sin6ðlx� ktÞ; uðx; tÞ ¼ cos6ðlx� ktÞ ð13Þ

� If b ¼ � 1
16l2,
-If m ¼ �2,

uðx; tÞ ¼ sech2ðlx� ktÞ; uðx; tÞ ¼ csch2ðlx� ktÞ: ð14Þ

-If m ¼ � 2
3,

uðx; tÞ ¼ sinh6ðlx� ktÞ; uðx; tÞ ¼ cosh6ðlx� ktÞ: ð15Þ

In the following we give some solutions with physical interest:
From (9), with m ¼ 1

6, and (13) we obtain that
uðx; tÞ ¼
sin6ðcðx� tÞÞ; jx� tj 6 p

c ;

0; jx� tj > p
c ;

(
ð16Þ
is a compacton solution of (2) with a ¼ 1, b ¼ 1
c2 and m ¼ 1

6 and for (2) with a ¼ 1, b ¼ 1
16c2 and m ¼ � 2

3. In Fig. 1, we plot solu-
tion (16) with c ¼ 1

4 which is a sine-type double compacton solution.
From (10), with m ¼ � 1

2, and (14) we obtain that
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Fig. 1. Solution (16) for c ¼ 1
4.
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Fig. 2. Solution (17).
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uðx; tÞ ¼ sech2ðx� tÞ; ð17Þ
is an exact solution of (2) with a ¼ 1, b ¼ �1 and m ¼ � 1
2 and for (2) with a ¼ 1, b ¼ � 1

16 and m ¼ �2. In Fig. 2, we plot solu-
tion (17) which is a soliton solution.

Solutions ((9), (10), (25), (12)–(15)) are solutions of Eq. (2) and these solutions do not appear in [6].

3. Nonclassical symmetries

The basic idea of the method is that the PDE (2) is augmented with the invariance surface condition
U � n
ou
ox
þ s ou

ot
� g ¼ 0; ð18Þ
which is associated to the vector field
V ¼ nðx; t; uÞ o

ox
þ sðx; t; uÞ o

ot
þ gðx; t;uÞ o

ou
: ð19Þ
By requiring that both, (2) and (18), are invariant under the transformation with infinitesimal generator (19), an overdeter-
mined nonlinear system of equations for the infinitesimals nðx; t;uÞ; sðx; t; uÞ and gðx; t;uÞ is obtained. The number of deter-
mining equations arising in the nonclassical method is smaller than for the classical method, consequently the set of
solutions is, in general, larger than for the classical method. However, the associated vector fields do not form a vector space.

To obtain nonclassical symmetries of (2) we apply the algorithm described in [10] for calculating the determining equa-
tions and we use the MACSYMA program symmgrp.max [7]. We can distinguish two different cases:

In the case s–0; without loss of generality, we may set sðx; t;uÞ ¼ 1, and we obtain a set of sixteen determining equations
for the infinitesimals nðx; t;uÞ and gðx; t;uÞ. Solving this system, we obtain

1. If a, b and m are arbitrary constants
n ¼ k1; g ¼ 0;
where k1 and k2 are constants.
2. If m is arbitrary and a ¼ 0, n ¼ k1

tþk2
, g ¼ � 2u

mðtþk2Þ
; where k1 and k2 are constants.

3. If a is arbitrary and m ¼ �1, n ¼ xþk1
tþk2

, g ¼ � 2u
tþk2

; where k1 and k2 are constants.
4. If a ¼ 0 and m ¼ �1, n ¼ �xþk1k3

k1ðtþk2Þ
, g ¼ 2ðk1þ2Þu

k1ðtþk2Þ
; where k1, k2 and k3 are constants.

By comparing these symmetries with the symmetries obtained by the classical method given in [6] we can observe that the
nonclassical method applied to (2) gives only rise to the classical symmetries.

In the case s ¼ 0, without loss of generality, we may set n ¼ 1 and we obtain one overdetermined system for the infin-
itesimal g.

The complexity of this system is the reason why we cannot solve it in general. Thus we proceed, by making ansatz on the
form of gðx; t;uÞ, to solve the system.
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For b ¼ � 1
m2, with m ¼ 1;2, choosing g ¼ gðx;uÞ, we find that the infinitesimal generators take the form
n ¼ 1; s ¼ 0; g ¼ u cosh x
sinh x

: ð20Þ
It is easy to check that these generators do not satisfy the Lie classical determining equations. Therefore, we obtain the non-
classical symmetry reduction
z ¼ t; u ¼ hðtÞ sinh x;
where hðtÞ satisfies the following linear second-order ODEs:

� For m ¼ 1
h00 � ah ¼ 0: ð21Þ
� For m ¼ 2
h00 þ 2h3 � ah ¼ 0: ð22Þ
The solutions of Eq. (21) yield the following exact solutions of Eq. (2):

If a > 0,
u ¼ ðk1 expð
ffiffiffi
a
p

t þ k2 expð�
ffiffiffi
a
p

tÞÞ sinh x: ð23Þ

If a < 0,

u ¼ ðk1 cosð
ffiffiffiffiffiffiffi
�a
p

tÞ � k2 sinð
ffiffiffiffiffiffiffi
�a
p

tÞÞ sinh x: ð24Þ

If a ¼ 0,

u ¼ ðk1t þ k2Þ sinh x: ð25Þ

After multiplying (22) by 2y0 and integrating once with respect to z we get
ðh0Þ2 ¼ �h4 þ ah2
: ð26Þ
This equation is solvable in terms of the Jacobian elliptic functions.
We remark that, when b ¼ �1 and m ¼ 1 Eq. (2) does not admit any classical symmetry but translations. Consequently,

(23)–(25), which are not travelling waves reductions, cannot be obtained by Lie classical symmetries.
For m ¼ 1, choosing g ¼ gðx; tÞ, we find the following infinitesimal generators:
n ¼ 1; s ¼ 0; g ¼ xw2ðtÞ þ w1ðtÞ; ð27Þ
where w1ðtÞ and w2ðtÞ satisfy
d2w2

dt2 � 6w2
2 ¼ 0; ð28Þ

d2w1

dt2 � 6w1w2 ¼ 0; ð29Þ
respectively. In this case, we obtain the nonclassical symmetry reduction
z ¼ t; u ¼ x2w2ðtÞ þ xw1ðtÞ þ w0ðtÞ;
where w2ðtÞ satisfies the Weierstrass elliptic function equation (28) and w1ðtÞ satisfies the Lamé equation (29) [10].
4. Classical potential symmetries

In order to find potential symmetries of (2), we write the equation in a conserved form and the associated auxiliary sys-
tem is given by
vx ¼ �ut;

v t ¼ aux þ ðumþ1Þx þ b½uðumÞxx�x:

�
ð30Þ
If ðuðxÞ;vðxÞÞ satisfies (30), then uðxÞ solves the generalized Boussinesq equation. The basic idea for obtaining classical poten-
tial symmetries is to require that the infinitesimal generator
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X ¼ nðx; t;u;vÞ o

ox
þ sðx; t; u;vÞ o

ot
þ /1ðx; t;u; vÞ

o

ou
þ /2ðx; t;u; vÞ

o

ov ð31Þ
leaves invariant the set of solutions of (30). This yields to an overdetermined, nonlinear system of equations for the infini-
tesimals nðx; t;u;vÞ; sðx; t;u;vÞ; /1ðx; t;u;vÞ and /2ðx; t;u;vÞ: We obtain classical potential symmetries if
ðnvÞ2 þ ðsvÞ2 þ ð/1;vÞ
2–0: ð32Þ
The classical method applied to (30) leads to the classical symmetries.

5. Nonclassical potential symmetries

The basic idea for obtaining nonclassical potential symmetries is that the potential system (30) is augmented with the
invariance surface conditions
nux þ sut � /1 ¼ 0; nvx þ sv t � /2 ¼ 0; ð33Þ
which is associated with the vector field
X1 ¼ nðx; t;u;vÞ o

ox
þ sðx; t;u; vÞ o

ot
þ /1ðx; t; u;vÞ

o

ou
þ /2ðx; t; u;vÞ

o

ov : ð34Þ
By requiring that both (30) and (33) are invariant under the transformations with infinitesimal generator (34) one obtains an
overdetermined, nonlinear system of equations for the infinitesimals nðx; t;u;vÞ; sðx; t;u;vÞ; /1ðx; t;u;vÞ and /2ðx; t;u;vÞ:

In the case s–0; without loss of generality, we may set sðx; t;vÞ ¼ 1. The nonclassical method applied to (30) yields to the
classical symmetries.

In the case s ¼ 0, without loss of generality, we may set n ¼ 1 and we obtain overdetermined nonlinear system of equa-
tions for the infinitesimals /1 and /2 which is solve by making ansatz on the form of /1ðx; t;u;vÞ and /2ðx; t;u;vÞ. In this way
we have found one solution.

For a ¼ 0 and m ¼ �1 we obtain the infinitesimal generators
n ¼ 1; s ¼ 0; /1 ¼ k uwðvÞ; /2 ¼ xðx;vÞ;
where k is constant and x and w satisfies �kwxþ ox
ox þx ox

ov ¼ 0:
In the case that x ¼ xðvÞ the infinitesimal generators are
n ¼ 1; s ¼ 0; /1 ¼ u
dx
dv ; /2 ¼ xðvÞ:
We obtain the nonclassical potential symmetry reduction
z ¼ t; u ¼ exp kx
dx
dv

� �
h1ðtÞ
and v is given by
R

dv
xðvÞ ¼ kxþ h2ðtÞ.

6. Hidden symmetries

We consider m ¼ 1, then Eq. (2) is
utt � buuxxxx � 2buxuxxx � b ðuxxÞ2 � 2uuxx � auxx � 2 ðuxÞ2 ¼ 0: ð35Þ
If we reduce Eq. (35) by using the generator kV1 þ V2 we get u ¼ hðzÞ, z ¼ x� kt and the reduced ODE is
bhh
0000
þ 2bh0h000 þ b ðh00Þ2 þ 2hh00 � k2 h00 þ ah00 þ 2 ðh0Þ2 ¼ 0: ð36Þ
Applying the Lie classical method to Eq. (36) with a ¼ k2 leads to a two-parameter Lie group.
X1 ¼
o

oz
; ð37Þ

X2 ¼ h
o

oh
: ð38Þ
This symmetry is determined by a computer program such as SYM [8,9] or symgrp.max [7]. The inherited symmetry is
V2 ! X1, which can be inferred by looking at the Lie algebra of the Case 1. The other symmetry is Type II hidden symmetries.
The PDE from which the hidden symmetries are inherited is the original PDE in which we substitute the side condition from
which the reduction has been derived
buuxxxx þ 2buxuxxx þ bðuxxÞ2 þ 2uuxx þ 2ðuxÞ2 ¼ 0: ð39Þ
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We are going to derive some weak symmetries of the model equation (35), choosing as side condition the differential
constraint
kux þ ut ¼ 0; ð40Þ
which is associated to the generator V1 þ kV2 that has been used to derive the reduction
h ¼ u; z ¼ x� kt:
Applying Lie classical method to the system (35) and (40) we get
n ¼ F1ðtÞ; s ¼ F2ðtÞ; g ¼ F3ðtÞu: ð41Þ
To apply the method in practice we use the MACSYMA package [7]. This yields the following generators:
U1 ¼ F1ðtÞ
o

ox
; ð42Þ

U2 ¼ F2ðtÞ
o

ot
; ð43Þ

U3 ¼ F3ðtÞu
o

ou
; ð44Þ
where FiðtÞ; i ¼ 1;2;3; are arbitrary functions. However, by appropriate choices of polynomials in t for FiðtÞ (and also taking
combinations) the group generators reduce to the two generators (37,38). Consequently, we prove that X2 is inherited as a
weak symmetry of Eq. (36) with the side condition (40).

7. Concluding remarks

In this paper, the complete Lie group classification for a family Boussinesq equation (2) has been obtained. The corre-
sponding reduced equations have been derived from the optimal system of subalgebras. We determine some nonclassical
symmetries and some nonclassical potential symmetries for Eq. (2). We also have derived new travelling wave solutions.
Among them we found solitons and compactons.

We also have obtained some Type-II hidden symmetries of a Boussinesq equation.
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