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1. Introduction and preliminaries

In this paper k is a (commutative) field of any characteristic. All rings are k-algebras. PBW algebras

are defined in [1]. They are given by generators and quantum relations (definitions later), and they are

also called polynomials of solvable type in [2] and G-algebras in [3–6]. In [7], there is an algorithm to

check if a given algebra is a PBW algebra. The algorithm has two steps: first it computes an admissible

ordering which “bounds” the quantum relations, and second Bergman’s Diamond Lemma is used to

check linear independence.However, the orderings computed in thefirst step arenot suitable tohandle

subalgebras and eliminate variables. Let us define some concepts to clarify the previous ideas.
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Let R be a k-algebra and let X = {x1, . . . , xp} be a set of elements in R. Let Np
be the free abelian

semigroup. For all 1 � i � p let εi be the canonical generators of Np
, i.e. εi is the element of Np

such

that all of its coordinates are equal to zero except the ith which is equal to 1.

(i) An admissible ordering � on Np
is a total order such that for all α,β, γ ∈ Np

, α � β implies

α + γ � β + γ . In commutative algebra they are also called monomial orderings since there is a

closer connection with monomials in a commutative polynomial algebra.

(ii) Let α = (α1, . . . ,αp) ∈ Np
. An element Xα = x

α1
1

· · · xαp
p is called a (standard) monomial in X . A

(standard) polynomial in X is a k–linear combination of standard monomials.

(iii) Let f = ∑
α cαX

α be a polynomial in X . The Newton diagram of f is defined as N(f ) = {α ∈
Np|cα /= 0}. Let � be an admissible order in Np

. The exponent of f (with respect to �) is exp(f ) =
max� N(f ).

(iv) A quantum relation is

xjxi = qijxixj + pij where qij ∈ k∗ and pij is a polynomial. (1)

This quantum relation is �-bounded with respect to an admissible ordering � on Np
if and

only if exp(pij) ≺ εi + εj . A full set of quantum relations is a set of quantum relations for each

1 � i < j � p.

(v) R is said to be a PBW-algebra with respect to an admissible ordering � if

(PBW1) the set of standard monomials {Xα |α ∈ Np} is a k-basis for R,

(PBW2) R satisfies a full set of �-bounded quantum relations.

If R is a PBW-algebra then for all α,β ∈ Np

XαXβ = qα,βX
α+β + pα,β where qα,β ∈ k∗ and exp(pα,β) ≺ α + β (2)

or equivalently for all f , g ∈ R

exp(fg) = exp(f ) + exp(g). (3)

This can be seen in [1, Propositions 1.3 and 1.7], although [7] contains a more general approach. Let

us see some examples.

Example 1. The quantum space Oq(k
p). It is generated by X = {x1, . . . , xp} and it satisfies the relations

xjxi = qijxixj for all 1 � i < j � p, where qij ∈ k∗.

The commutative polynomial ring is a particular case of this quantum space when qij = 1 for all

i < j.

Example 2. The n × n quantized uniparametricmatrix algebraOq(Mn(k)) is generated by xij , 1 � i, j �
nwith relations

xijxkl =

⎧⎪⎪⎨
⎪⎪⎩
qxklxij (k < i, j = l),

qxklxij (k = i, j < l),

xklxij (k < i, j > l),

xklxij + (q + q−1)xkjxil (k < i, l < j).

Example 3. Weylalgebrasandenvelopingalgebrasoffinite-dimensional Liealgebrasarealsoexamples

where qij = 1 for all i < j.

Example 4. Let U = Uq(C) be the quantum enveloping algebra in the sense of [8,9] associated to a

Cartan matrix C. This is an algebra over C(q), where q is an indeterminate. Following [10], U can be

presented as a quotient of a PBW algebra. Details when C = A2 are given in Appendix.
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Let R be a k-algebra generated by X = {x1, . . ., xp} and satisfying a quantum relation (1) for each pair

1 � i < j � p. In [7], an algorithm to check whenever R is a PBW-algebra with respect to X is provided.

This algorithm is organized in two steps,

STEP 1 an admissible ordering � such that exp(pij) ≺ εi + εj for all i < j is computed if it exists [11],

STEP 2 Bergman’s Diamond Lemma [12] is applied to see the linear independence of standard

monomials.

A different but closer approach to the second task is the Non Degeneracy Condition studied in [5].

The computed ordering in thefirst step is aweighted one; a (weights) vectorω ∈ (N+
)p is computed

such that for all 1 � i < j � p and all α ∈ N(pij), 〈α,ω〉 < ωi + ωj; hence the ordering �lexω defined by

α�lexωβ ⇐⇒
{〈α,ω〉 < 〈β,ω〉 or

〈α,ω〉 = 〈β,ω〉 and α �lex β
(4)

satisfies the requirements. Note that the lexicographical ordering �lex can be replaced by any other

admissible ordering.

Theseweighted orderings have been used to compute Gelfand–Kirillov dimension of finitely gener-

ated R-modules. They are useful for this task because all coordinates of ω are strictly positive. However

they do not work properly to handle subalgebras. The elimination orderings are the right choice for

this.

Let R be a k-algebra generated by X = {x1, . . ., xp} and satisfying a full set of quantum relations

like (1). Let � = {xi1 , . . ., xir } be a subset of X and let Y = X \ � be the complementary subset. We will

identify � (resp. X \ �) with the subset {i1, . . ., ir} ⊆ {1, . . ., p} (resp. {1, . . ., p} \ {i1, . . ., ir}). Let R� be the

k-subvector space of R generated by {�α = x
α1
i1

· · · xαr
ir

|α ∈ Nr}.
Let us define the canonical maps, injection

i� : Nr −→ Np; α �−→ i�(α) = exp(�α
) = α1εi1 + · · · + αrεir

and projection

π� : Np −→ Nr; α �−→ π�(α) = (αi1
, . . .,αir ) = αi1

ε1 + · · · + αir εr .

Let Nr
� be the image of Nr

in Np
via i�. These definitions can be extended to Y if needed.

Definition 1 [6, Definition 5]. Let R be a PBW-algebra with respect to X = {x1, . . ., xp} and an admissible

ordering �. Let � = {xi1 , . . ., xir } be a subset of X . The ordering � is called an elimination ordering for

Y = X \ � if for any f ∈ R, exp(f ) ∈ Nr
� implies f ∈ R�.

The next proposition is a direct consequence of the definition.

Proposition 2. � is an elimination ordering for X \ � if and only if for all α,β ∈ Np
, β ∈ Nr

� and α � β

imply α ∈ Nr
�.

Proposition 3. If � is an elimination ordering for X \ � then

(1) for all {i, j} ⊆ {i1, . . ., ir}, with i < j, pij ∈ R�,

(2) R� is a subalgebra of R.

Proof. Since pij = xjxi − qijxixj for each pair i < j, the first assertion follows from the second one. So let

α,β ∈ Nr
. By (2) exp(�α�β

) = i�(α) + i�(β) ∈ Nr
�, hence �α�β ∈ R� as desired. �

Example 5. An Ore extension A[x;�, δ] of a ring A, where � is an automorphism of A and δ a �-

derivation, is givenby the rulexa = �(a)x + δ(a).Weyl algebras, quantummatricesandquantumspaces

are instances of an iterated Ore extension R = k[x1][x2;�2, δ2] · · · [xp;�p, δp], where�j(xi) = qijxi for all

i < j. The lexicographical ordering with ε1 < · · · < εp is an admissible ordering for R. This ordering in

an elimination ordering for all � = {x1, . . ., xr} and Y = X \ � = {xr+1, . . ., xp}. See [2].
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The existence of elimination orderings for a given PBW algebra is characterized in this paper. We

compute a weights vector ω such that ωi = 0 for all index i such that xi ∈ � if an elimination ordering

exists for X \ �. In order to prove this result, we have analyzed the elimination orderings onNp
. Finally,

a subclass of elimination orderings is considered tohandle someOre subsets and classical localizations.

2. Existence of elimination orderings

Let p = e + r and let� = {e + 1, . . ., e + r} ⊆ {1, . . ., p}. We say that an elimination ordering for X \ �
is an (e, r)-elimination ordering. We also denote i� = ir and π� = πr . Sometimes we will identify αr =
irπr(α) and αe = α − αr . It follows from Proposition 2 that � is called an (e, r)-elimination ordering if

and only if for all α ∈ Nr
, and all β ∈ Np

, β � ir(α) implies β = βr . The next characterization allows the

extension of the concept of elimination ordering.

Proposition 4. � is an (e, r)-elimination ordering if and only if for all 1 � i � e and all α ∈ Nr
, it follows

ir(α) ≺ εi.

Proof. Let 1 � i � e and α ∈ Nr
. If εi � ir(α) then εi = εr

i
. But εr

i
= 0, hence ir(α) ≺ εi.

Conversely, let α ∈ Nr
, β ∈ Np

such that β � ir(α). If β /= βr then there exists 1 � i � e and β ′ ∈ Np

such that β = εi + β ′. So β � ir(α) ≺ εi � εi + β ′ = β, a contradiction. �

Remark 5. Proposition 4 allows the extension of the definition of elimination orderings to Zp
, Qp

and

Rp
.

Definition 6. An admissible ordering � on Zp
is called (e, r)-elimination ordering if for all 1 � i � e

and all α ∈ Zp
(resp. α ∈ Zr

), it follows αr ≺ εi (resp. ir(α) ≺ εi).

Proposition 7. � is an (e, r)-elimination ordering on Np
if and only if its extension to Zp

is an (e, r)-

elimination ordering and Np
is in the positive cone.

Lemma 8. Let� be an elimination ordering and let 0 /= ω ∈ (R+
0 )p such that β � α implies 〈ω,β〉 � 〈ω,α〉.

Then ω = (ωe, 0).

Proof. Since � is an elimination ordering, for all 1 � i � e and all α ∈ Nr
, (0,α) � (εi, 0). Hence, ωi =

〈εi,ω〉 � 〈(0,α),ω〉 = 〈α,ωr〉. Let s ∈ N such that s > ωi for all 1 � i � e. If ωr /= 0, then 〈ωr , (s, r. . ., s)〉 �
s > ωi, a contradiction. �

This lemmagives us howelimination orderings should look like. In [13], admissible orderings onNp

are parameterized by equivalence classes of matrices. For each ordering � there exists A ∈ Mp×m(R)

such that α � β if and only if αA �lex βA; m depends on the dimension of entries of the matrix A as

Q-vector space; see [13] for details. Inmost examplesm = p and A is regular. The previous lemma says

that the first column ω of A should satisfy ω = (ωe, 0). We can look for examples with this property.

Definition 9. Let � be an admissible ordering on Zp
. A subsetB of Zp

is called positive with respect

to � if β � 0 for all β ∈ B. This is denoted byB � 0.B is called positive if there exists an admissible

ordering such thatB is positive with respect to it.

We want to characterize those finite subsets of Zp
such that they are positive with respect to an

elimination ordering. The existence of elimination orderings is going to be reduced to the existence of

(e, 1)-elimination orderings.

Proposition 10. Let B be a finite subset of Ze+1
. If B is positive with respect to an (e, 1)-elimination

ordering � on Ze+1
then there exists ω ∈ Re+1

such that
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(a) ω1, . . .,ωe > 0,

(b) ωe+1 = 0,

(c) 〈β,ω〉 � 0 for all β ∈ B.

Weneed some previous lemmas to prove Proposition 10. So letB be a positive finite subset of Ze+1

and let � be an (e, 1)-elimination ordering. We assume ε1 � · · · � εe � εe+1 without loss of generality.

Let

B′ = B ∪ {ε1 − ε2, . . ., εe−1 − εe, εe+1}
and for all n ∈ N

Bn = B′ ∪ {εe − nεe+1}.
Since� is (e, 1)-eliminationwe have thatBn � 0 for all n ∈ N. LetB′ = {β1, . . .,βs}. We can assume

β j = εj − εj+1 for all 1 � j � e − 1, and βe = εe+1. Let r1, . . ., rs ∈ R+ \ Q such that {r1, . . ., rs} are Q-

linearly independent. For a fixed n ∈ N let us write β0 = εe − nεe+1 and r0 = 1. Let us call

Cn = {ω ∈ Re+1|〈β i,ω〉 � ri for all 0 � i � s}.

Lemma 11. Cn is a nonempty polytope.

Proof. It is a polytope because it is the intersection of a finite number of hyperplanes. Let

On = {ω ∈ Re+1|〈β,ω〉 > 0 ∀β ∈ Bn}.
It is clear that Cn ⊆ On. By [11, Proposition 2.1] On is nonempty, so let ω0 ∈ On and let

λ0 = max
0�i�s

{
ri

〈β i,ω0〉
}

.

Then for all 0 � i � s we have 〈β i, λ0ω0〉 � ri, hence λ0ω0 ∈ Cn and so Cn is nonempty. �

Lemma 12. There exists K ∈ R+
such that for each vertex ω in one of the polytopes Cn and for all 1 � i �

e − 1, we have ωe � ωi � Kωe.

Proof. Since {β0 = εe − nεe+1,β
1 = ε1 − ε2, . . .,β

e−1 = εe−1 − εe,β
e = εe+1} ⊆ Bn, we have

ω1 � · · · � ωe � ωe+1 � re > 0. (5)

Therefore, we only have to prove that ω1 � Kωe for some K ∈ R+
. Let ω be such a vertex. There exist

n ∈ N and e + 1 elements {β i1 , . . .,β ie+1 } ⊆ Bn such that ω is the unique solution of the linear system

β
i1
1

ω1 + · · · + β
i1
e ωe + β

i1
e+1

ωe+1 = ri1 ,

.

.

.

β
ie
1

ω1 + · · · + β
ie
e ωe + β

ie
e+1

ωe+1 = rie ,

β
ie+1

1
ω1 + · · · + β

ie+1
e ωe + β

ie+1

e+1
ωe+1 = rie+1

.

If 1 � i1, . . ., ie+1 � s then ω is independent of n and ωi > 0 for all i implies ω1 is bounded by some

positive multiple of ωe. So let us assume without loss of generality that ie+1 = 0, i.e. the defining

equations of ω are

β
i1
1

ω1 + · · · + β
i1
e ωe + β

i1
e+1

ωe+1 = ri1 ,

.

.

.

β
ie
1

ω1 + · · · + β
ie
e ωe + β

ie
e+1

ωe+1 = rie ,

ωe − nωe+1 = 1.
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Using Cramer’s rule

ω1

ωe
= K1 + K2 + K3n

K4 + K5n
, where K5 =

∣∣∣∣∣∣∣∣∣∣∣∣

β
i1
1

. . . β
i1
e−1

ri1
.
.
.

. . .
.
.
.

.

.

.

β
ie−1

1
. . . β

ie−1

e−1
rie−1

β
ie
1

. . . β
ie
e−1

rie

∣∣∣∣∣∣∣∣∣∣∣∣
.

Hence, if K5 /= 0 then ω1
ωe

is bounded as desired. Let

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

β
i1
1

. . . β
i1
e−1

β
i1
e

.

.

.
. . .

.

.

.
.
.
.

β
ie−1

1
. . . β

ie−1

e−1
β
ie−1
e

β
ie
1

. . . β
ie
e−1

β
ie
e

⎞
⎟⎟⎟⎟⎟⎟⎠

and let Bi,j be the i, j-adjoint. Since β i1 , . . .,β ie are linearly independent it follows that the adjoints

B1,e, . . .,Be−1,e,Be,e cannot be all of them equal to zero. But ri1B1,e + · · · + rie−1
Be−1,e + rieBe,e = 0 if and

only if B1,e = · · · = Be−1,e = Be,e = 0 since {ri1 , . . ., rie−1
, rie } are Q-linearly independent. Therefore, K5 /=

0 and the lemma is proved. �

Proof [Proof of Proposition 10]. For all n ∈ N let νn be a vertex of the polytope (it exists by Lemma 11).

Since νne � nνn
e+1

> 0, we can define ωn = 1
νne

νn. By Lemma 12 and (5), and since νne � nνn
e+1

, it follows:

1 � ωn
i = νn

i

νne
� K for all 1 � i � e and 0 < ωn

e+1 = νn
e+1

νne
� 1

n
. (6)

(Note that ωn
e = 1 for all n). Let � : N → N be an increasing map such that all for all 1 � i � e + 1 the

sequences {ω�(n)

i
} are convergent. Let

νi = lim
n→∞ ω

�(n)

i
for all 1 � i � e + 1.

By (6) ν1, . . ., νe > 0 and νe+1 = 0. For all β ∈ B, since β1ν
n
1

+ · · · + βeνne + βe+1ν
n
e+1

> 0, it follows:

〈β, ν〉 = β1ν1 + · · · + βeνe + βe+1νe+1 = lim
n→∞ β1ν

n
1 + · · · + βeνne + βe+1ν

n
e+1 � 0.

So ν is the desired vector. �

It remains to see the general situation. First we see the density results.

Lemma 13. LetA,B ⊆ Zp
and let X = {x ∈ Rp \ {0}|∀α ∈ A, 〈x,α〉 > 0and∀β ∈ B, 〈x,β〉 = 0}. If X /= ∅ then

X ∩ Qp
/= ∅.

Proof. LetV = {x ∈ Rp \ {0}|∀β ∈ B, 〈x,β〉 = 0}andU = {x ∈ Rp \ {0}|∀α ∈ A, 〈x,α〉 > 0}. ThenX = U ∩ V

is a nonempty open set in V . Hence by density X ∩ Qp
is also nonempty. �

Proposition 14. Let B be a finite subset of Zp
. Let H = {x ∈ Rp|x = xe, ∀i ∈ {1, . . .e}, xi > 0 and ∀β ∈

B, 〈x,β〉 � 0}. If H /= ∅ then H ∩ Np
/= ∅.

Proof. Fix v ∈ H. Let A1 = {β ∈ B|〈v,β〉 > 0} and B1 = {β ∈ B|〈v,β〉 = 0}. Let A = A1 ∪ {εi|1 � i � e}
and B = B1 ∪ {εi|e + 1 � i � p}. Lemma 13 ensures H ∩ Qp

/= ∅. Let u ∈ H ∩ Qp
, since ui � 0 for all i,

we can multiply by a common denominator to obtain ω ∈ H ∩ Np
. �
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We can now prove the first theorem.

Theorem 15. Let B be a positive finite subset of Zp
and let � = {i1, . . ., ir} ⊆ {1, . . ., p}. There exists an

elimination ordering for {1, . . ., p} \ � on Zp
such that β � 0 for all β ∈ B if and only if there exists ω ∈ Np

such that

(a) ωi /= 0 for all i /∈ �,

(b) ωj = 0 for all j ∈ �,

(c) 〈β,ω〉 � 0 for all β ∈ B.

Proof. Necessary condition is easy: Let � be the admissible ordering which allowsB to be positive. If

such vector ω exists then the ordering �ω defined by

α�ωβ ⇐⇒
{〈α,ω〉 < 〈β,ω〉 or

〈α,ω〉 = 〈β,ω〉 and α � β

is an elimination ordering for {1, . . ., p} \ �.

So let us prove sufficiency. Up to a reordering the positions we can assume� = {e + 1, . . ., e + r}, i.e.
� is an (e, r)-elimination ordering. (This clarifies the notation). Let us define two maps.

ˆ : Ze+r −→ Ze+1
,

β �−→ β̂ = (β1, . . .,βe,max{βe+1, . . .,βe+r})

and

− : Ze+1 −→ Ze+r
,

β �−→ β̄ = (β1, . . .,βe,βe+1,
r. . .,βe+1).

LetB = {β1, . . .,βs} ⊆ Ze+r
be positive and let � be an (e, r)-elimination ordering such that β i � 0

for all 1 � i � s. Let B̂ = {β̂1, . . ., β̂s} and let �′ be the ordering on Ze+1
defined by

α �′ β ⇐⇒ ᾱ � β̄.

It is easy to check that�′ is an admissible ordering.Moreover, if 1 � i � e then (0, . . ., 0,n, r. . .,n) ≺ εi
and hence nεe+1 ≺′ εi. Therefore �′ is an (e, 1)-elimination ordering.

Since for allα ∈ Ze+r
thereexists γ ∈ Ne+r

such that ¯̂α = α + γ , it follows that0 ≺ ¯̂
β i for all 1 � i � s.

Hence, 0 ≺′ β̂ i for all 1 � i � s. By Proposition 10 there exists ν ∈ Re+1
such that

(a) ν1, . . ., νe > 0,

(b) νe+1 = 0,

(c) 〈β̂, ν〉 � 0 for all β̂ ∈ B̂.

Since ν̄ = (ν1, . . ., νe, 0,
r. . ., 0) satisfies for all β ∈ B

〈β, ν̄〉 = 〈β̂, ν〉 � 0,

we have proven that H = {x ∈ Rp|x1, . . ., xe > 0, xe+1 = · · · = xe+r = 0 and ∀β ∈ B, 〈x,β〉 � 0} /= ∅, so

by Proposition 14 there exists ω ∈ H ∩ Np
, i.e. ω1, . . .,ωe > 0, ωe+1 = · · · = ωe+r = 0 and for all β ∈ B

〈β,ω〉 � 0 as desired. �

3. Elimination of variables

Let R be an algebra generated by the set X = {x1, . . ., xp} and satisfying the quantum relations (1) for

all 1 � i < j � p.
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Theorem 16. Assume that there exists an admissible ordering � on Np
such that the quantum relations

(1) are �-bounded. Let � = {xi1 , . . ., xir } be a subset of X. The quantum relations (1) for all 1 � i < j � p

of R are bounded with respect to an elimination ordering for X \ � if and only if there exists ω ∈ Np
such

that

(i) for all i ∈ �, ωi = 0,

(ii) for all i ∈ X \ �, ωi /= 0,

(iii) for all i < j and all α ∈ N(pij), 〈α,ω〉 � ωi + ωj.

Proof. The relations of R are �-bounded if and only if for all 1 � i < j � p and all α ∈ N(pij) it follows

α ≺ εi + εj . Let Bij = {εi + εj − α|α ∈ N(pij)} andB = ⋃
i<j Bij . Let us use the same symbol � to denote

the extension of this ordering to Zp
. Then the quantum relations of R are �-bounded if and only if

B � 0. Hence, the proof follows from Theorem 15. �

This theorem can be used to decide effectively if there exists an elimination ordering for some

variables in a PBW-algebra. Let R be an algebra generated by X = {x1, . . ., xp} and satisfying �-quantum

relations (1) for all i < j. Let � = {xi1 , . . ., xir }. As in the previous proof let Bij = {εi + εj − α|α ∈ N(pij)}
andB = ⋃

i<j Bij .

Consider the following linear programming problem

minimize f (x1, . . .xp) = x1 + · · · + xp
with the constraints

� ≡
⎧⎨
⎩
xi � 1 (i /∈ {i1, . . ., ir}),
xj = 0 (j ∈ {i1, . . ., ir}),
〈β, x〉 � 0 (β ∈ B).

(7)

Proposition 17. The set of �-bounded quantum relations (1) for all i < j is �′-bounded, where �′ is an
elimination ordering for X \ �, if and only if the linear programming problem (7) has a solution. Moreover

for each solution ω of (7), the ordering �ω is an elimination ordering for X \ �.

Proof. The linear programming problem (7) has a solution if and only if the feasible region � is not

empty (notice that the linear functional f (x1, . . ., xp) is bounded from below whenever the feasible

region is not empty). Hence, the proposition follows from Theorem 16. �

Remark 18. Thanks to Proposition 17 we can implement an algorithm to decide if there exists an

elimination ordering for a given set of variables. It is desirable to choose an environment where the

simplex algorithm is implemented. Once the simplex algorithm has provided a solution with real

coordinates, the ideas in Lemma 13 and Proposition 14 allows to find a solution with non-negative

integers as coordinates. In the examples we have checked, the solutions of the simplex algorithm are

usually integer solutions as desired. The computations made in the appendix have been done with

Mathematica(.

However, we think that Plural [14,4] is a very good choice. A procedure similar to Gweights in the

library nctools.lib [15] can be developed. We do not expect any serious difficulties.

The main application of elimination orderings is the following classic result:

Proposition 19 [6, Lemma 2]. Let R be a PBW algebra with respect to an elimination ordering � for �. Let

I ⊆ R be a left or a right ideal. If G is a Gröbner basis for I then G ∩ R� is a Gröbner basis for I ∩ R�.

So we can compute a set of generators for I ∩ R� once we know a set of generators for I. In

the commutative case, i.e. R = k[x1, . . ., xp], the thesis of Proposition 19 characterizes elimination

orderings:
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Lemma 20. Let R = k[x1, . . ., xp], let � be an admissible ordering and � ⊆ X. If for each ideal I � R and

each Gröbner basis G of I, G ∩ R� is a Gröbner basis for I ∩ R� then � is an elimination ordering for X \ �.

Proof. Let α � β with β ∈ Nr
�. Assume α /∈ Nr

�. Let G = {Xα ,Xβ } and G′ = {Xα ,Xβ + Xα}. It is clear that
G andG′ generate the same ideal I, and it is easy to see thatG andG′ are bothGröbner bases for I. Hence,

G ∩ R� = {Xβ } and G′ ∩ R� = ∅ are both Gröbner bases for I ∩ R�, a contradiction. Hence, α ∈ Nr
� as

desired. �

Remark 21. In view of Lemma 20, elimination orderings are necessary in the commutative setting to

perform elimination of variables. In the non commutative setting R� is not necessarily a subalgebra

since it is the k-subspace of R generated by {�α |α ∈ Nr}, and G and G′ are not necessarily a Gröbner

basis for the left (or right) ideal they generate. So the previous proof does not work in the non commu-

tative setting. However, since non commutative PBW algebras are more restrictive with respect to the

possible orderings, it is not reasonable to think that elimination of variables can be performedwithout

elimination orderings. In our setting we say that a set of variables can/cannot be eliminated with the

help of Gröbner bases if there exists/there does not exist an elimination ordering for this set. If R� is

not a subalgebra we could consider the subalgebra generated by �, but we do not know how to work

with this more general setting.

We finish this section with a result on the structure of PBW algebras with respect to an elimination

ordering. LetX = {x1, . . ., xp} be a set of elements in R,� = {xi1 , . . ., xir } a subset as usual and Y = X \ � =
{xj1 , . . ., xje }, the complementary set. Let’s regard that for all α ∈ Nr

and all β ∈ Ne

�α = Xi�(α) and Yβ = XiY (β). (8)

Proposition 22. Assume R is a PBW algebra with respect to X and an elimination ordering � for Y . Then

R is a left (right) free R�-module with basis {Yβ |β ∈ Ne}.

Proof. Let first see that all f ∈ Rbelongs to
∑

β∈Ne R�Y
β .Weare going toprove it by inductiononexp(f ).

If exp(f ) = 0 (even if exp(f ) ∈ Nr
�) then the result is clear. So let f = cXexp(f ) + f ′ with exp(f ′) ≺ exp(f ).

Let’s call α = π�(exp(f )) and β = πY (exp(f )), then exp(f ) = i�(α) + iY (β). By (2) there exists q = qα,β ∈
k∗, such that

Xi�(α)+iY (β) = qXi�(α)XiY (β) + p, where exp(p) ≺ i�(α) + iY (β).

Hence by (8)

f = cq�α
Yβ + cp + f ′ with exp(cp + f ′) ≺ exp(f ).

Induction hypothesis ensures cp + f ′ ∈ ∑
γ∈Ne R�Y

γ , and therefore f ∈ ∑
γ∈Ne R�Y

γ as desired.

It remains to prove the linear independence. Consider the expression

f1Y
β1 + · · · + ftY

βt
, where f1, . . ., ft ∈ R� \ {0}.

We can assume β1 ≺ · · · ≺ βt . Hence, exp(fiY
β i

) /= exp(fjY
β j

) for all 1 � i /= j � t. Then exp(f1Y
β1 +

· · · + ftY
βt

) = max{exp(fiY
β i

)|1 � i � t} and f1Y
β1 + · · · + ftY

βt
/= 0. The linear independence is

proven. �

4. Block orderings and localization

Let us analyze the localization. To localize in Ore sets we are going to focus on an interesting family

of examples of elimination orderings, the block orderings.

Definition 23. Let�r and�e be admissible orderings onNr
andNe

, respectively. Let p = e + r as usual.

The ordering � on Np
defined by



2142 J.I.G. Garcia et al. / Linear Algebra and its Applications 430 (2009) 2133–2148

α � β ⇐⇒
{
πY (α) ≺e πY (β) or

πY (α) = πY (β) and π�(α) �r π�(β)

is called (Y ,�)-block ordering.

Proposition 24. A block ordering is an elimination ordering for Y = X \ �.

Proof. Let β ∈ Nr
�, i.e. β = i�(π�(β)), and let α ≺ β. Then πY (α) �e πY (β) since � is a block ordering.

But πY (β) = 0 because β ∈ Nr
�, hence πY (α) = 0 and then α ∈ Nr

� as desired. �

Remark 25. Let � be a (Y ,�)-block ordering, where �e and �r are the corresponding admissible

orderings on Ne
and Nr

. It is easy to see that for all α,β ∈ Ne
, α ≺e β if and only if iY (α) ≺ iY (β).

The same applies for each pair γ , δ ∈ Nr
. Hence, the orderings on each part of Np

can be recovered

from �.

Remark 26. It is well known that tensor products of PBW algebras are PBW algebras. The orderings

which provide PBW structures on tensor products are block orderings. See [7] for details.

Example 6. Let � be the ordering on N4
defined by the matrix⎛

⎜⎜⎝
1 0 1 0

2 0 3 0

0 1 0 1

0 1 1 0

⎞
⎟⎟⎠ ,

i.e. α ≺ β if and only if

(α1 + 2α2,α3 + α4,α1 + 3α2 + α4,α3) ≺lex (β1 + 2β2,β3 + β4,β1 + 3β2 + β4,β3).

Since the first column is (1, 2, 0, 0), this ordering is a ({1, 2}, {3, 4})-elimination ordering. However,

we have

(1, 1, 1, 0) ≺ (3, 0, 1, 1)

but

(1, 1, 0, 0) � (3, 0, 0, 0),

hence � is not a ({1, 2}, {3, 4})-block ordering.

The existence of block orderings can be characterized in a similar way to Theorem 15:

Theorem 27. LetB be a positive finite subset of Zp
and let� = {i1, . . ., ir} ⊆ {1, . . ., p}. There exists a block

ordering for Y = {1, . . ., p} \ � on Zp
such that β � 0 for all β ∈ B if and only if there exist ωe ∈ (N+

)e and

ωr ∈ (N+
)r such that

∀β ∈ B,

{〈πY (β),ωe〉 > 0 or

〈πY (β),ωe〉 = 0 and 〈π�(β),ωr〉 > 0.

Proof. As before, if there exist ωe ∈ (N+
)e and ωr ∈ (N+

)r satisfying the desired properties then the

ordering

α � β ⇐⇒
{
πY (α)≺lexωeπY (β) or

πY (α) = πY (β) and π�(α)�lexωrπ�(β)

is a block ordering such that β � 0 for all β ∈ B. Recall that �lexωe and �lexωr are defined in (4).

So assume B is positive with respect to a block ordering �, and let �e, �r be the corresponding

orderings on Ne
and Nr

. LetBe = {πY (β)|β ∈ B} \ {0} ⊆ Ze
andBr = {π�(β)|β ∈ B,πY (β) = 0} ⊆ Zr

.
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Since � is a block ordering we haveBe
,Br

are positive with respect to �e and �r respectively. By [11,

Proposition 2.1]1006.16023, there existωe ∈ (N+
)e andωr ∈ (N+

)r such that for all β ′ ∈ Be 〈β ′,ωe〉 > 0

and for all β
′′ ∈ Br 〈β ′′

,ωr〉 > 0. Hence for all β ∈ B, πY (β) ∈ Be
and 〈πY (β),ωe〉 > 0, or π�(β) ∈ Br

and

〈π�(β),ωr〉 > 0 as desired. �

Let R be a domain. Recall that S ⊆ R is a left Ore set if for all r ∈ R and all s ∈ S there exist r′ ∈ R

and s′ ∈ S such that s′r = r′s. Right Ore sets are defined analogously. Ore sets are those which allow

the definition of rings of quotients: fractions are equivalence classes of pairs (s, a) ∈ S × R via the

equivalence relation (s, a) ∼ (t, b) if and only if there exist c, d ∈ R such that cs = dt ∈ S and ca = db.

The arithmetic is defined by

(s, a) + (t, b) = (u, ca + db), where u = cs = dt ∈ S,

(s, a) · (t, b) = (us, cb), where ua = ct and u ∈ S.

It is denoted by QS(R). We refer to [16, Section 2.1] or [17] for details concerning localization. In

particular it is proved that if R is a Noetherian domain, the set of nonzero elements is an Ore set. We

use widely Proposition 22.

Proposition 28. Let R be a PBW algebra with respect to X and a (Y ,�)-block ordering � . Let S = R� \ {0}.
Then S is a left and right Ore set in R.

Proof. Let s ∈ S and
∑

δ�λ aδY
δ ∈ R. In order to prove that S is left Ore we are going to find s′ ∈ S and∑

δ�λ′ a′
δY

δ ∈ R such that∑
δ�λ′

a′
δY

δs = s′
∑
δ�λ

aδY
δ . (9)

Since � is a block ordering it follows that

exp

⎛
⎝s′

∑
δ�λ

aδY
δ

⎞
⎠ = exp(s′) + exp(aλ) + iY (λ), (10)

Yγ s =
∑
δ�γ

sγ δY
δ , where sγ γ ∈ S. (11)

It also follows from (10) that

exp

⎛
⎝∑

δ�λ′
a′

δY
δs

⎞
⎠ = exp(aλ′ ) + exp(s) + iY (λ′). (12)

So λ′ = λ if both s′ and
∑

δ�λ′ a′
δY

δ exist. Since

s′
∑
δ�λ

aδY
δ =

∑
δ�λ

(s′aδ)Y
δ ,

by (10)⎛
⎝∑

γ�λ

a′
γ Y

γ

⎞
⎠ s =

∑
γ�λ

a′
γ (Yγ s)

=
∑
γ�λ

a′
γ

⎛
⎝∑

δ�γ

sγ δY
δ

⎞
⎠

=
∑

δ�γ�λ

a′
γ sγ δY

δ .
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So for all δ � λ we have to find s′ and a′
γ , for all γ � λ such that

s′aδ =
∑

δ�γ�λ

a′
γ sγ δ. (13)

Let us proceed by induction on λ. If λ = 0, then
∑

δ�λ aδY
δ = a0 ∈ R�, and since S ⊆ R� is left Ore

(see e.g. [16, 2.1.15]) then there exist a′ ∈ R� and s ∈ S such that s′a = a′s. So assume λ � 0.

For all δ � λ let bδ ∈ S = R� \ {0} such that{
sλδbδ = sλλbλ ∈ S if sλδ /= 0,

bδ = 1 if sλδ = 0.
(14)

They exist because S is right Ore in the domain R�, see [16, 2.1.8]. For all δ ≺ λ let

aδ =
{
aδbδ − aλbλ if sλδ /= 0,

aδbδ = aδ if sλδ = 0.

By induction there exist
∑

γ≺λ a
′′
γ Y

γ and s
′′
such that for all δ ≺ λ

s
′′
aδ =

∑
δ�γ≺λ

a
′′
γ sγ δbδ . (15)

Moreover there exist a
′′′
λ ∈ R� and s

′′′ ∈ S such that

a
′′′
λ sλλbλ = s

′′′
aλbλ (16)

because S is left Ore in R�. Let s
IV and sV such that

sIV s
′′ = sV s

′′′ = s′ ∈ S (17)

and let

a′
δ =

{
sIV a

′′
δ if δ ≺ λ,

sVa
′′′
λ if δ = λ.

First

s′aλbλ = sV s
′′′
aλbλ by (17)

= sVa
′′′
λ sλλbλ by (16)

= a′
λsλλbλ by definition,

hence, s′aλ = a′
λsλλ = ∑

λ�γ�λ a
′
γ sγ λ because R� is a domain, and (13) has solution in this case. Now

assume δ ≺ λ and sλδ = 0. Then

s′aδbδ = sIV s
′′
aδ by (17) and definition

=
∑

δ�γ≺λ

sIV a
′′
γ sγ δbδ by (15)

=
∑

δ�γ≺λ

a′
γ sγ δbδ by definition

=
∑

δ�γ�λ

a′
γ sγ δbδ because sλδ = 0.

We can also cancel bδ out and we have (13) in this second case. Finally, let δ ≺ λ and sλδ /= 0. We

have

s′aδbδ = s′(aδ + aλbλ) by definition

= sIV s
′′
aδ + sV s

′′′
aλbλ by (17)

=
∑

δ�γ≺λ

sIV a
′′
γ sγ δbδ + sV s

′′′
aλbλ by (15)
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=
∑

δ�γ≺λ

sIV a
′′
γ sγ δbδ + sVa

′′′
λ sλλbλ by (16)

=
∑

δ�γ≺λ

sIV a
′′
γ sγ δbδ + sVa

′′′
λ sλδbδ by (14)

=
∑

δ�γ�λ

a′
γ sγ δbδ by definition.

Once again we can cancel bδ out and we have (13) in the lase case. Therefore we have covered all

possible cases and the proof is finished. �

What can we say about effective computations? Using syzygy modules, if A is a PBW algebra and

S = A \ {0} then the localization QS(A) is a computable division ring. See [18,7] for details (see [19] for

a previous non commutative reference in enveloping algebras of Lie algebras). In our setting, we have

to take more care. We recall from [20] that a ring extension k ⊆ B of a division ring k is called a PBW

ring if there exists X = {x1, . . ., xp} ⊆ B and an admissible ordering � on Np
such that

(1) B is a free left k-module with the standard monomials in X as a basis.

(2) for every 1 � i � p and every a ∈ k \ {0} there exist qia ∈ k \ {0} and a standard polynomial pia
such that

xia = qiaxi + pia and exp(pia) ≺ εi,

(3) for each 1 � i < j � p there exist qij ∈ k \ {0} and a standard polynomial pij such that

xjxi = qijxixj + pij and exp(pij) ≺ εi + εj.

i.e. it satisfies a full set of quantum relations for a non commutative base ring. The arithmetic and

algorithms to compute in a PBW ring can be seen in [20,7]. So effective computations are possible in

PBW rings.

Theorem 29. Let R be a PBW algebra with respect to a (Y ,�)-block ordering � and let S = R� \ {0}. Then
QS(R) is isomorphic to a PBW ring over the division ring QS(R�).

Proof. Let T be the free left QS(R�)-module with basis {Yα |α ∈ Ne}. Let � be the map

� : QS(R) −→ T ,(
s,

∑
α

aαY
α

)
�−→ ∑

α

(s, aα)Yα.

Let us prove that � is well defined. Assume
(
s,

∑
α aαY

α
) ∼

(
t,

∑
β bβY

β
)
. Then there exist c, d ∈ R

such that cs = dt ∈ S and c
∑

α aαY
α = d

∑
β bβY

β . Since cs = dt ∈ S and � is a block ordering, it fol-

lows that c, d ∈ S. Hence,
∑

α caαY
α = c

∑
α aαY

α = d
∑

β bβY
β = ∑

β dbβY
β and then

∑
α(s, aα)Yα =∑

β(t, bβ)Yβ . If
∑

α(s, aα)Yα = 0, then aα = 0 for all α ∈ Ne
, hence � is injective. Moreover, given∑

α(sα , aα)Yα ∈ T there exist bα ∈ R� for allα,β ∈ Ne
such that aα , aβ /= 0 satisfying bαsα = bβsβ = s ∈ S,

so (sα , aα) ∼ (s, bαaα)and
∑

α(sα , aα)Yα = �
(
s,

∑
α bαaαY

α
)
.Hence,� is also surjective.Via thisbijection

T is an algebra.

Let (s, a) ∈ QS(R�) and yi ∈ {y1, . . ., ye}. By Proposition 22, using the fact that � is a block ordering,

ayi = qi,ayi + pi,a where qi,a ∈ R� and pi,a = ∑
α≺eεi

aαY
α . So

yi(s, a) = (s, qi,a)yi +
∑

α≺eεi

(s, aα)Yα.

Analogously

yjyi = qijyiyj +
∑

α≺eεi+εj

aαY
α.
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Hence, T is a PBW ring over QS(R�). �

Therefore, effective computations are possible in QS(R) when R is a PBW algebra with respect to a

(Y ,�)-block ordering and S = R� \ {0}.

Appendix: Uq(A2)

Wefinishwith anon trivial example, thequantized enveloping algebra associated to aCartanmatrix

of type A2. Consider the PBW algebra V generated by f12, f13, f23, k1, k2, l1, l2, e12, e13, e23 and satisfying

the following relations:

e13e12 = q−2e12e13,

e23e12 = q2e12e23 − qe13,

e23e13 = q−2e13e23,

f13f12 = q−2f12f13,

f23f12 = q2f12f23 − qf13,

f23f13 = q−2f13f23,

e12f12 = f12e12 + k2
1
−l2

1

q2−q−2 ,

e12f13 = f13e12 + qf23k
2
1
,

e12f23 = f23e12,

e13f12 = f12e13 − q−1l2
1
e23,

e13f13 = f13e13 − k2
1
k2
2
−l2

1
l2
2

q2−q−2 ,

e13f23 = f23e13 + qk2
2
e12,

e23f12 = f12e23,

e23f13 = f13e23 − q−1f12l
2
2
,

e23f23 = f23e23 + k2
2
−l2

2

q2−q−2 ,

e12k1 = q−2k1e12,

e12k2 = qk2e12,

e13k1 = q−1k1e13,

e13k2 = q−1k2e13,

e23k1 = qk1e23,

e23k2 = q−2k2e23,

e12l1 = q2l1e12,

e12l2 = q−1l2e12,

e13l1 = ql1e13,

e13l2 = ql2e13,

e23l1 = q−1l1e23,

e23l2 = q2l2e23,

k1f12 = q−2f12k1,

k2f12 = qf12k2,

k1f13 = q−1f13k1,

k2f13 = q−1f13k2,

k1f23 = qf23k1,

k2f23 = q−2f23k2,

l1f12 = q2f12l1,

l2f12 = q−1f12l2,

l1f13 = qf13l1,

l2f13 = qf13l2,

l1f23 = q−1f23l1,

l2f23 = q2f23l2,

l1k1 = k1l1,

l1k2 = k2l1,

l2k1 = k1l2,

l2k2 = k2l2,

k2k1 = k1k2,

l2l1 = l1l2.

The elements k1l1 − 1 and k2l2 − 1 are in the center of V , so the left (or right) ideal I generated by

them is twosided. The quantized enveloping algebra associated to A2 isUq(A2) = V/I. This follows from

[21, Section 3]. The constraints associated to the setB in (7) are (see also [11, Appendix])

f12 − f13 + f23 � 0, e12 − e13 + e23 � 0,

−2k1 − f23 + e12 + f13 � 0, −2k2 − e12 + e13 + f23 � 0,

−2l1 − e23 + e13 + f12 � 0, −f12 − 2l2 + e23 + f13 � 0,

−2k1 + e12 + f12 � 0, −2l1 + e12 + f12 � 0,

−2k1 − 2k2 + e13 + f13 � 0, −2l1 − 2l2 + e13 + f13 � 0,

−2k2 + e23 + f23 � 0, −2l2 + e23 + f23 � 0.

The other constraints depend on the variables we want to eliminate. For instance:

(1) If we want to check that the variables f13, f23 can be eliminated, then we have to add these

constraints

f12 = 0, f13 � 1, f23 � 1,

k1 = 0, k2 = 0, l1 = 0, l2 = 0,

e12 = 0, e13 = 0, e23 = 0.

The associated linear programming problem gives as solution f13 = 1 and f23 = 1, so these

variables can be eliminated.
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(2) If we consider the variables f12 and f23, the constraints are

f12 � 1, f13 = 0, f23 � 1,

k1 = 0, k2 = 0, l1 = 0, l2 = 0,

e12 = 0, e13 = 0, e23 = 0,

and the LPP has no solution. So these variables cannot be eliminated.

(3) As a last example let us choose f13, f23, l2, the new constraints are

f12 = 0, f13 � 1, f23 � 1,

k1 = 0, k2 = 0, l1 = 0, l2 � 1,

e12 = 0, e13 = 0, e23 = 0

and one solution is f13 = 2, f23 = 2 and l2 = 1, so the elimination of f13, f23, l2 is possible.
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