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1. Introduction

ABSTRACT

A procedure has been developed to obtain an evolution equation with the temperature for the actual
transformed volume fraction under non-isothermal regime and to calculate the kinetic parameters in
glassy solids. Once an extended volume of transformed material has been defined and spatially random
transformed regions have been assumed, a general expression of the extended volume fraction has been
obtained as a function of the temperature, bearing in mind the case presented in the practice of a kinetic
exponent with a larger value than 4. This unexpected value is justified assuming that both the nucleation
frequency and the crystal growth rate depend on time as a power law. Moreover, considering impinge-
ment effect and from the quoted expression, the actual volume fraction transformed has been deduced.
The kinetic parameters have been obtained, by assuming that the reaction rate constant is a temperature
function of Arrhenius type and using the following considerations: the condition of maximum crystalliza-
tion rate and the quoted maximum rate. The theoretical model developed and the Johnson-Mehl-Avrami
model have been applied to the crystallization kinetics of the Agp16AS0.425€0.42 glassy alloy, which presents
two exothermic peaks. The second peak gives for the kinetic exponent values enough larger than 4 in both
models. The quoted values do not fulfil the assumptions of the Avrami model and it is necessary to resort
to the hypotheses of the developed model to justify the unexpectedly high value of the kinetic exponent.
Moreover, the experimental curve of the transformed fraction shows a better agreement with the theo-
retical curve of the developed model than with the corresponding curve of the Avrami model, confirming
the reliability of the theoretical model developed in order to analyze the transformation kinetics of the
above-mentioned glassy alloy.

© 2008 Elsevier B.V. All rights reserved.

community. Solid-state phase transformations play an important
role in the production of many materials. Therefore, a great impulse

Although glass has been used as an artistic medium and indus-
trial material for centuries, it has been only in relatively recent years
when the “glass science” has emerged as a field of study in its own
right. Yet one of the most active fields of solid-state research in the
last decades has been the study of solids that are not crystals, solids
in which the arrangement of the atoms lacks the slightest vestige
of long-range order.

The advances that have been made in physics and chemistry
of these materials, which are known as amorphous solids or non-
crystalline, have been widely appreciated within the research
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has been given at the study of a general description of the kinet-
ics of phase transformations [1], and accordingly, the last 50 years
have seen a theoretical and practical interest in the application of
calorimetric analysis techniques to the study of the quoted transfor-
mations [2-4]. Thus, the classical theory of nucleation and crystal
growth has been developed over the last 60 years. A full develop-
ment of the theory is given by Christian [5] and a relatively recent
review published by Kelton [6].

The calorimetric analysis techniques are very quick and need
very small quantities of glass samples to obtain the kinetic param-
eters of a transformation. There are two thermal analysis regimes:
one is the isothermal regime [4-7], in which glass samples are
quickly heated up and held at a temperature above glass transi-
tion temperature, and the other is so-called non-isothermal regime
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[8-12], in which glass samples are heated up at a fixed heating
rate. In general, an isothermal experiment takes longer times than
a non-isothermal experiment, but isothermal experimental data
can be interpreted by the well-established Johnson-Mehl-Avrami
kinetic equation [13-16]. On the contrary, non-isothermal exper-
iments have as an advantage, the rapidity that makes this type of
experiments more attractive. The use of non-isothermal techniques
to study solid-state transformations and to determine the kinetic
parameters of the rate controlling processes has been increasingly
widespread. Therefore, the use of the non-isothermal regime has
produced a large number of mathematical treatments to analyze
thermal process data.

The quoted techniques have become particularly prevalent for
the investigation of the processes of nucleation and growth that
occur during transformation of the metastable phases in a glassy
alloy as it is heated. These techniques provide fast information on
such parameters as: glass transition temperature, transformation
enthalpy and activation energy over a wide range of temperature
[17]. In addition, the physical form and the high thermal conduc-
tivity as well as the temperature at which transformations occur
in most amorphous alloys make these transformations particularly
suited to be analyzed by a differential scanning calorimeter (DSC).

The study of crystallization kinetics in amorphous materials
by means of differential scanning calorimetry methods have been
widely discussed in the literature [6-18]. There is a large variety of
theoretical models and theoretical functions proposed to explain
the crystallization kinetics. The application of each of them depends
on the type of amorphous material studied and how it has been
made.

In the present work, a theoretical procedure has been developed
to obtain an evolution equation with temperature for the actual
transformed volume fraction. This equation has been obtained
bearing in mind the mutual interference of regions growing from
separated nuclei and the case in which the kinetic exponent takes
a larger value than 4, which is presented in the practice, accord-
ing to the literature [19]. We justify the quoted case assuming that
both the nucleation frequency and the crystal growth rate depend
on time as a power law [19-21]. The kinetic parameters and the
glass—crystal transformation mechanism have been deduced from
DSCexperiments, using the above-mentioned equation and assum-
ing a non-isothermal regime.

Moreover, this work applies the theoretical model developed
(TMD) and the Johnson-Mehl-Avrami (JMA) model for the anal-
ysis of the crystallization kinetics of the Agg15ASp42S€0.42 glassy
semiconductor, which presents two exothermic peaks. The values
of the kinetic exponent obtained for the second peak in both models
are enough larger than 4. It should be noted that the quoted TMD
allows to justify the obtained value, whereas a value of the kinetic
exponent cannot be larger than 4, according to J]MA model.

Besides, the experimental and theoretical curves of the trans-
formed volume fraction, x, vs. temperature, T have been compared
for every model considered. The mentioned curves show a better
agreement in the case of the TMD than the curves correspond-
ing to the JMA model, confirming the reliability of the theoretical
model developed to describe the glass—crystal transformation of
the studied alloy.

2. Theoretical basis
2.1. Nucleation, crystal growth and volume fraction transformed
The theoretical basis to interpret DSC results is provided by the

formal theory of transformation kinetics [14-16,22-24]. This for-
mal theory supposes that the crystal growth rate, in general, is

anisotropic, and therefore, the volume of a region originating at
time t=(1—a)t (t being the nucleation period and where « is a
parameter equal to zero in the case of continuous nucleation, and
equal to the unit in the case of “site saturation”[25]) is then.

t
ve=g] | / u(¢)de (1)
i (1-a)T

where u;(t’) (i=1, 2, 3) represents the principal growth veloci-
ties in the three mutually perpendicular directions, the expression
Hf(i_a)r u;(t")dt’ condenses the product of the integrals corre-

1
sponding to the values of the above quoted subscript i and finally
g is a geometric factor, which depends on the dimensionality and
shape of the crystal growth, and therefore, its dimension equation
can be expressed as

[g]=[LP~" ([L]is the length)

Defining an extended volume of transformed material and
assuming spatially random transformed regions [26-28], the ele-
mental extended volume fraction, dx., in terms of nucleation
frequency per unit volume, Iy(7), is expressed as

dxe = [adN + (1 — a)ly(t)dT]U:

t
:g[adN+(1—a)Iv(t)dr]H/ u(t)de’ 2)
o

1-a)t

where dN is the elemental number of nuclei existing per unit vol-
ume.

When the crystal growth rate is isotropic, u; =u, an assumption,
which is in agreement with the experimental evidence, since in
many transformations the reaction product grows approximately
as spherical nodules [5], Eq. (2) can be written as

t

dxe = g [adN + (1 — a)ly(7)dT] [/ u(t’)dt’] (3)
(

1-a)t
where m is an exponent related to the dimensionality of the crystal
growth.

It should be noted that over a sufficiently limited range of
temperature (such as the range of transformation peaks in DSC
experiments) the quantities Iy(7) and u(t) may be considered to
have an Arrhenian temperature dependence [28]. In this case, the
kinetic exponent is n=m+1 in continuous nucleation processes
and n=m in “site saturation” processes. Accordingly, the maximum
values of the quoted exponent are 4 and 3, respectively [29]. Never-
theless, in the practice major values are obtained, which according
to the literature [30,31] suggest a very high nucleation rate with
three-dimensional growth. Besides, these high values of kinetic
exponent can be justified in accordance with the literature [19-21]
if Iy(t) and u(t) depend on time as a power law.

It is interesting to denote that, according to the literature [19],
there are two major competing ideas, dating back over 60 years, that
try to provide overall models to describe the origin of crystallization
textures. The quoted ideas are known as oriented nucleation and
oriented growth, and were proposed by Burgers and Louwerse [32]
in 1931 and by Barret [33] in 1940, respectively. The essential basis
of oriented nucleation is that new grains with the orientation of the
major component of the crystallization texture nucleate at a much
higher frequency than do grains of all other orientations. In the case
of oriented growth, the nuclei already produced with the required
orientation for the crystallization grow faster than nuclei of other
orientations [19].

With the aim to explain the probable physical nature of the
quoted time-dependence for the nucleation frequency and the crys-
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tal growth rate, we assume the above-mentioned ideas for the
glass—crystal transformation model that will be developed in this
work. Thus, it is possible to consider, according to literature [19],
that nucleation and crystal growth processes, probably elapse with
accelerating rates. Accordingly, theses processes are non-linear and
the quantities Iy and u must depend explicitly on time. This depen-
dence can be expressed as a power law in accordance with the
literature [19-21]. As it can be observed in Eq. (3), the quoted time-
dependence increase the value of the kinetic exponent, a fact that
allows to justify unexpectedly high values, larger than 4, which
at times are obtained for the quoted exponent in thermal exper-
iments.

Bearing in mind the above-mentioned physical considerations
we propose for Iy(t) and u(t) the following expressions

Iy(t) = kot exp (—IE%) (4)
and
u(t) = uptd exp (—%) (5)

where Ey and Eg are the effective activation energies for nucleation
and growth, respectively, p and g are the exponents for each of the
quoted power laws and the dimension equations of the coefficients
Iyp and ug can be expressed as

[lvol = [LI2[TT7 P, [uo] =

In the present work, a theoretical method has been developed
to integrate Eq. (3) under the quoted conditions, to obtain a general
expression for the extended volume fraction, xe, and to justify high
values of kinetic exponent in non-isothermal processes.

Accordingly, assuming a constant heating rate, f=dT/dt, and
considering Egs. (4) and (5), Eq. (3) becomes

(LTI ([T]is the time)

dxe = Bmla+1) pp+1

T m
« (/ T/quG/RT’dT/> (6)
T:

T being the temperature corresponding to (1 — &)t time.
When the case of continuous nucleation, o =0, is considered, the
integration of Eq. (6) yields

m
&% [adN L =vo TPe~EN/RTrdT. }

uml T T "
Xe = -0 V0 [ ppa-tn/RT: ([ pdeEc/RIqT) dT,
Bm(a+1)+p+1 T
To Tz
T
:Pl/ TPeEn/RTemdT, (7)
To

By the substitution y’ =E/RT, the integral I; of the Eq. (7) is
transformed in an exponential integral of order 2 +q, which is a
particular case of the order r, which can be expressed, in accordance
with the literature [34], by the alternating series

( 1) (k+r—-1)!
B2

Sr(J”J’r)= [ (8)

T

Accordingly, taking r=2+q in Eq. (8), considering that in this
type of series the error produced is less than the first term neglected
and bearing in mind that in most glass—crystal transformations
y' =Eg/RT > 1, usually Eg/RT >25 [28], it is possible to use only
the first term of the above-mentioned series, without making any

appreciable error, and the integral I; can be written as

R E E
— = |T19+2 _ZG ) _ ra+2 _ =G
L = Ec [T exp ( RT) T: 7" exp ( RT,)} 9)

an expression, which is substituted in Eq. (7) and by means of the
expansion of the binomial-potential series [34], one obtains

Xe = Py (%)mZH)S(?)(Tweffc/”)’”’s

s=0

T
« / T5+S(Q+2)e—(EN+sEG)/RdeTT
To

n(E) S

By the substitution z; =(Ey +SEg)/RTz, the integral I, is trans-
formed in an exponential integral of order p +2 +s(q +2), which is
evaluated as the integral I1, according to the literature [34], yielding

Tq+Ze—EG/RT)m_512 (10)

b= R TP+2+5(q+2) exp {(_EN + SEG)] (11)

En + sEg RT

if it is assumed that To« T, so that zy can be taken as infin-
ity. This assumption is justifiable for any thermal treatment
that begins at a temperature where nucleation and crystal
growth are negligible, i.e., below the glass transition tempera-
ture, Tg, [28]. Substituting Eq. (11) into Eq. (10), introducing the
parameter Qp = R(R/EG)mZTzo[(—l Y /(En + sEG)](?) and defining
areaction rate constant Ky = [glvougTe—(EN+mEc)/RT]1/['“(‘1“)+P+1] -
Kpoe E/RT with an Arrhenian temperature dependence, the
extended volume fraction, under non-isothermal regime, is
expressed as

XE:QA(KAIBTZ> Tm+1-n (12)

which is a general expression in the case of continuous nucleation
processes. It should be noted that E is the overall effective activa-
tion energy, Kag the frequency factor with a dimension equation
[T]=1([T] is the time) and the kinetic exponent is written as

=m(q+1)+p+1 (13)

The quoted general expression condenses the four possible cases
for a continuous nucleation process under non-isothermal regime,
namely:p # 0,q # 0;p=0,q # 0;p # 0,gq=0and p=q=0.

On the other hand, if the case of “site saturation”, & =1, is con-
sidered Eq. (6) becomes

Nou™ T y "
Xe = ;m(‘;+‘;) [ / T'9e~Ec/RT dT/} =P,I7 (14)
To

where Ny is the number of pre-existing nuclei in the volume of the
sample and Ty is the starting temperature.

By means of a similar calculation process to that of integral I,
integral I5 is evaluated, resulting in

Ec\T' [ eV 17 , _Ec
I3 = (—) —_ —Tq+ exp ( ) (15)
R r\d+2 E, RT
o l,, *to

where the quoted assumption To « T, so that yy can be taken as
infinity, is again considered [28].

Substituting Eq. (15) into Eq. (14), introducing the param-
eter Qg=(R/Eg)™ and defining a reaction rate constant K =
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(gNouge—mEG/RT)l/m(q”):I(Boe—E/RT, with an Arrhenian tem-
perature dependence, the extended volume fraction, under
non-isothermal regime, is expressed as

xe=QB<Kl§2> ™" (16)

which is a general expression in the case of “site saturation” pro-
cesses, where Kgg is the frequency factor with a dimension equation
[T]~1 and the kinetic exponent is written as

n=m(qg+1) (17)

The quoted general expression condenses the two possible
cases for a “site saturation” process under non-isothermal regime,
namely: g # Oand g=0.

Bearing in mind the o parameter, already quoted, Egs. (12) and
(16) can be condensed as

Xe:Q(KTﬂz> Tm—n+l—oz (18)

1-«
with the parameter Q = (R/EG)m{RZ;ﬂ:o[(—l Y /(En + sEG)](?)} ,
the reaction rate constant
K= {guo’”NgI\}a"‘ef[U*a)EN+mEG]/RT}1/" =Koe E/RT  and the
kinetic exponent is given as

n=m(q+1)+(1-a)p+1) (19)

It should be noted that Eq. (18) is a general expression for the
extended volume fraction, when non-isothermal treatments are
performed, both for continuous nucleation and for “site saturation”
processes.

By using the explicit form of Arrhenian temperature dependence
for the reaction rate constant Eq. (18) can be rewritten as

Xe = QK (?)n (%)m_n+]_a {(ﬁ;)m_w_a exp (—Z’;ﬂ (20)

Given that, asymptotically, for nE > RT the exponential term in
Eq. (20) changes much faster compared to the power law, in square
brackets, the latter can be treated almost as a constant, in accor-
dance with the literature [24], and then Eq. (20) becomes

xe:D<YZ>nexp (—%) (21)

where D can be considered as a constant, with adimension equation
[6T]~™ ([#] is the temperature).

On the other hand, it is well known the impingement effect
in the glass-crystal transformations. In accordance with the lit-
erature [5], to obtain a general kinetic equation for the actual
transformed volume fraction, the mutual interference of regions
growing from separated nuclei must be considered. When two such
regions impinge on each other it is possible that the two regions
develop a common interface, over which growth ceases, although
it continues normally elsewhere. In this sense, following the liter-
ature [5,35] and considering the hypothesis of random nucleation
it is possible to write the relationship between the actual volume,
Vb, and the extended volume, Ve, in the form

Vo \ % _
dv,, = ( - 7) dVe = (1 - x)"idVe (22)

where x=V},/V is the actual transformed volume fraction, V is the
volume of the whole assembly, y; is termed the impingement expo-
nent, and considering dVe = Vdx,, Eq. (22) can be expressed as

(1 —x)Yidx = dxe (23)

Defining an impingement factor §; =(y; — 1)1, the general solu-
tion of the preceding differential equation is given as

x=1-(1+x81)7" (24)

By substituting Eq. (21) into Eq. (24), one obtains

n —4;
1 T2 nkE
x=1- {]+&D(ﬁ) exp (—RT)} (25)

an equation for the actual transformed volume fraction correspond-
ing to the above-developed model.

It should be noted that if the impingement exponent, y;=1,
8; — , and considering Eq. (21) Eq. (24) becomes

_11-8
x:l—liml1+(&> ]
Bi—>oc Xe

=1—exp(—xe)=1—exp [—D(T;) exp (—Ziﬂ (26)

corresponding to the JMA model.

In the following section, we will be deducing that the values
of the constant D and the kinetic exponent are different for each
model, whereas the value of the activation energy is the same in
both models.

2.2. Calculating the kinetics parameters

It is well known that between the proposed methods in the lit-
erature [28] to analyze the crystallization kinetics in glass-forming
liquids the differential methods play an important role. From this
point of view, the crystallization rate is obtained in this work, taking
the derivative of the actual crystallized volume fraction [Eq. (24)]
with respect to time, resulting in
dx

o = (14! )

8i+1) dxe
dt

The maximum crystallization rate is found making d2x/dt2 =0,
yielding

d?x di+1 11 fdxe\?
], = (1) e ()
p P
where the subscript p denotes the quantity values corresponding
to the maximum crystallization rate.

Taking the first and the second derivative of the extended vol-
ume fraction [Eq. (21)] with respect to time, substituting both
into Eq. (28), and dividing the resulting equation by expression
Dn,BZ*”Tg”*2 exp(—nE/RTp), and finally extracting common factor
n in the left hand side, the quoted Eq. (28) can be rewritten as

E\’ E E\° _/T2\"
= _ = — = b —nE/RTp
n(2+RTp) 2<1+RTP> n<2+RTp) D(ﬂ) e

x (5"(;: ) (1+ xelp8;) 7 (29)

(27)

(28)

and dividing by expression n(2 + E/RTp )2, Eq. (29) becomes

8i+1 e (TN
( 5, )(1+Xe|p8i1) D(g) e /Ry

_q 2 (E/RT) (30)
(2 +E/RTp)

which relates the crystallization kinetics parameters E, n and §; to
the quantity values that can be determined experimentally, and
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which correspond to the maximum crystallization rate. Bearing in
mind Eq. (21) and that in most transformation reactions E/RT, > 1
(usually E/RT, > 25), an assumption already quoted, Eq. (30) yields

Si+1 -
< l(;_ )(1+(Silxe|p) lXe‘p=1 (31)
i

Substituting in Eq. (31) the expression x|, taken from Eq. (24)
and by making explicit the quantity 1 —xp, one obtains

5 \”
_ i
1—xp_(6i+1) (32)

an expression from which, the impingement factor, §;, can be eval-
uated in a set of exotherms taken at different heating rates, by
using a method of successive approximations (e.g. secant method).
The corresponding mean value may be taken as the most probable
value of the impingement factor in the glass—crystal transformation
process.

Substituting in Eq. (31) the expression (1 +8i‘]xe|p)7l taken
from Eq. (24), bearing in mind Eq. (32) yields xe|, = 1, and then
the logarithmic form of Eq. (21) is expressed as

TS E
F RT, ~ Inh (33)
whichis alinear function, whose slope and intercept give the overall
effective activation energy, E, and the quantity h = D!/" [see Eqgs. (20)
and (21)], which is related to the probability of effective collisions
for the formation of the activated complex.

Besides, substituting in Eq (27) f%r the maximum crystallization
rate, the expression (1 + 8 Xelp) and (dxe/dt)|p taken from
Egs. (24) and (21), bearmg in mind that x|, = 1 and considering
the above quoted assumption E/RTp > 1, one obtains

In

dx . . _
RT3 5 [(1 xp) Ot 1/% g1 (34)

an expression which allows the kinetic exponent, n, to be calcu-
lated in a set of exotherms taken at different heating rates. The
corresponding mean value may be considered as the most probable
value of the kinetic exponent of the transformation process.

The constant D can be evaluated from the quantity h, already
quoted, Eq. (33), and the kinetic exponent, n. It should be noted
that the quoted constant is related to frequency factor, Koy, of the
glass—crystal transformation process, according to Egs. (20) and
(21).

It is important to mark that in J]MA model, where it is assumed
that I, and u do not depend explicitly on the time (p=g=0),
n=m+1—q, according to Eq. (19), and h=D'"=Q!/"K, in Eq. (33)
[see Egs. (20) and (21)]. Besides, considering Eq. (32), and Eq. (34)
becomes

dx -
_ RT2 1
=RT} @, (0.37BE) (35)

an expression which allows the kinetic exponent, n, to be calculated
in the quoted model.

3. Experimental

The Ago16AS0.425€0.42 glassy semiconductor was prepared in bulk form by the
standard melt quenching method. High-purity (99.999%) silver, arsenic and sele-
nium in appropriate atomic percentage proportions were weighed and introduced
into a quartz glass ampoule (6 mm diameter). The content of the ampoule (7 g per
batch) was sealed at a pressure of 102 Pa and heated in a rotating furnace at around
1125K for 120 h and submitted to a longitudinal rotation of 1/3rpm in order to
ensure the homogeneity of the molten material. It was then immersed in a recepta-
cle containing water with ice in order to solidify the material quickly, avoiding the
crystallization of the compound.

1.4

o
L

0.2

< EXO HEAT FLOW (mW)
(=]
(=)}

425 455 485 515 545 575
r(K)

Fig. 1. Typical DSC trace of Agp15AS0.425S€0.42 semiconductor alloy at a heating rate
of 16 Kmin~'. The hatched area shows Ar, the area between T; and T.

The amorphous state of the material was checked through a diffractometric
X-ray scan, in a Bruker AXS, D8 Advance model diffractometer. The homogeneity
and composition of the sample were verified through scanning electron microscopy
(SEM) in a JEOL, scanning microscope JSM 820. The thermal behaviour was investi-
gated using a Perkin-Elmer DSC7 differential scanning calorimeter with an accuracy
of £0.1 K. Temperature and energy calibrations of the instrument were performed,
for each heating rate, using the well-known melting temperatures and melting
enthalpies of high-purity zinc and indium supplied with the instrument [36].

The samples weighing about 10 mg were crimped in aluminium pans, and
scanned from room temperature through their glass transition temperature, Tg, at
different heating rates of 2, 4, 8, 16, 32 and 64 Kmin~'. An empty aluminium pan
was used as reference, and in all cases a constant 60 mlmin~"' flow of nitrogen was
maintained in order to provide a constant thermal blanket within the DSC cell, thus
eliminating thermal gradients and ensuring the validity of the applied calibration
standard from sample to sample. The glass transition temperature, Tg, was consid-
ered as a temperature corresponding to the inflection of the lambda-like trace on
the DSC scan, as shown in Fig. 1.

The crystallized fraction, x, corresponding to an exothermic peak at any tem-
perature, T, is given by x=Ar/A, where A is the total area limited by the exotherm of
the quoted peak between the temperature, T;, where the crystallization just begins
and the temperature, Ty, where the crystallization is completed and Ar is the area
between the initial temperature and a generic temperature T, see Fig. 1.

4. Results

The typical DSC trace of Agg1ASg.42S5€0.42 semiconductor glass
obtained at a heating rate of 16 Kmin~! and plotted in Fig. 1 shows
two exothermic peaks clearly separated. Both peaks exhibit two
characteristic phenomena, which are resolved in the temperature
region studied. The first one corresponds to the extrapolated onset
crystallization temperature, T, (T.; =478.3 K for the first peak and
Te> =539.8 K for the second peak) and the last one to the peak tem-
perature of crystallization, Tp, (Tp1 =495.4K for the first peak and
Tp2 =548.4K for the second peak), of the above-mentioned semi-
conductor glass. The quoted DSC trace shows the typical behaviour
of a glass—crystal transformation. The data of the thermograms for
the different heating rates, 8, quoted in Section 3, show values of
the quantities T, and Tp, which increase with increasing g for both
peaks, a property, which has been reported in the literature [37].

Table 1
Characteristic temperatures and enthalpies of the crystallization process of the
Ago16AS0.425€0.42 glassy alloy

Parameter Experimental value

First peak Second peak
T; (K) 459.9-476.5 508.5-553.8
Ty (K) 481.2-508.5 515.3-578.0
AT (K) 37.6-62.4 16.6-38.6
AH (mcalmg—) 42-8.2 1.4-4.0
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Fig. 2. Crystallization rate vs. temperature for the first exothermal peak at different
heating rates.

4.1. Glass—crystal transformation

The kinetics analysis of the crystallization reactions is related
to the knowledge of the reaction rate constant as a function of the
temperature. In this sense, a great number of analytical methods,
proposed in the literature to describe the above-mentioned reac-
tions, assume that the reaction rate constant can be represented by
means of an Arrhenius type temperature dependence [28,38]. This
assumption involves that the maximum values of the kinetic expo-
nent are 4 and 3 in continuous nucleation and in “site saturation”
processes, respectively [29]. Nevertheless, in the practice major val-
ues of the quoted exponent are obtained, which according to the
literature [30,31] suggest a very high nucleation rate with three-
dimensional growth. Bearing in mind this assumption we analyze
the glass—crystal transformation kinetics of Agy16AS0.425€0.42 alloy
in accordance with the theory developed in Section 2.

With the aim to analyze the crystallization kinetics of the above-
mentioned alloy, the variation intervals of the quantities described
by the thermograms for the different heating rates, quoted in Sec-
tion 3, and corresponding to the two peaks of crystallization, are
obtained and given in Table 1, where T; and T, are the tempera-
tures at which crystallization begins and that corresponding to the
maximum crystallization rate, respectively, and AT is the width of
each crystallization peak. The crystallization enthalpy AH is also
determined for each of the heating rates.

The limited area by each peak of the DSC curve is directly propor-
tional to the total amount of crystallized alloy. The ratio between
the ordinates of the exotherm and the total area of a peak gives the
corresponding crystallization rates, which make it possible to plot
the curves dx/dt vs. T for the different heating rates. As an illustra-
tive example, the quoted curves corresponding to the first peak of
alloy studied are represented in Fig. 2. It should be noted that the
(dx/dt)|p values increase in the same proportion that the heating
rate, a property which has been widely discussed in the literature
[39].

From the experimental data the plots of ln(Tg/ﬁ) vs. 1/Tp at
each heating rate have been drawn and also the straight regression
line (SRL) shown in Fig. 3 for each one of the peaks of the quoted
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Fig. 3. Experimental plots of ln(Tg/ﬂ) vs. 1/T, and straight regression lines of the
Ago16AS0.425€0.42 alloy (B in Ks~1): (@) first peak; (O) second peak.

alloy. From the slopes and intercepts of these experimental lines,
according to Eq. (33), both the overall effective activation energy, E,
and the quantity h are obtained for each peak of the glass—crystal
transformation, which, together with the SRL equations, are pre-
sented in Table 2. Moreover, the experimental data (dx/dt)p, Tp
and xp, shown in Table 3, allow to obtain for each peak of crys-
tallization the parameters §; and n for TMD and the parameter n for
JMA model.

For the first model, by using Eq. (32) and following the secant
method of successive approximations, the impingement factor has
been evaluated for each heating rate and for the two peaks obtained.
The calculation of the kinetic exponent has been carried out for each
heating rate, by using Eq. (34), from the quoted experimental data,
together with the value of the activation energy, given in Table 2 for
each peak, and the corresponding results of the impingement factor.
The values both for §; and for n are also given in Table 3. Bearing
in mind that the calorimetric analysis is an indirect method which
only makes it possible to obtain mean values for the parameters
which control the mechanism of a reaction, §; and n, the mentioned
mean values have been calculated and given in Table 3. For the
second model, the kinetic exponent has been calculated in the same
way but using Eq. (35). The values obtained and the corresponding
mean value for each peak are also given in Table 3.

We have examined the mean values of the kinetic exponent
for every peak according to the JMA model and we find a value
(n)=0.98 for the first peak, which fulfils suitably the assumptions
of the quoted model, whereas the second peak gives an unexpect-
edly high value of the kinetic exponent, (n) =5.32. This last value is
notinagreement with the assumptions of the JMA model, since for a
constant rate of growth, u, of new grains and a constant rate of their
nucleation, I, the expected value of the kinetic exponent will be 4
falling 3 if all new grains nucleate at the start of the glass—crystal
transformation, giving “site saturation” [25,40].

Bearing in mind this fact we have considered the TMD, where
both Iy and u depend on time as a power law [19-21] of which
exponents are p and g, respectively [see Eqgs. (4) and (5)]. For the
model lately quoted Eq. (19)is obtained, where the kinetic exponent

Table 2
Straight regression lines (SRL) fitted to values of the In (Tg/ﬁ) and kinetic parameters
of the two peaks analyzed

Peak SRL E (kcalmol~1) h(Ks)! r
First 29.4607 x ]03/Tp —45.6028 58.92 6.38 x 10" 0.9969
Second 15.5240 x 103/Tp —14.2902 31.05 1.61 x 106  0.9986

ris the correlation coefficient.
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Table 3

Maximum crystallization rate, corresponding temperature and crystallized volume fraction, kinetic exponent and impingement factor for the different heating rates and for

the two exothermic peaks

Peak B(Kmin~1) 103(dx/dt)|p (s7!) T, (K) X TMD IMA
& n (i) (n) D (Ks)™" n (n) D (Ks)™"
First 2 1.70 481.2 0.5512 1.8724 1.37 1.08
4 3.12 485.0 0.5392 1.5802 1.32 1.01
8 6.27 490.7 0.5117 1.1349 1.48 1.2231 1.41 8.41 x 10%7 1.04 0.98 2.56 x 1010
16 10.92 495.4 0.5022 1.0240 1.35 0.92
32 21.06 502.5 0.5066 1.0729 133 0.92
64 41.69 508.5 0.4545 0.6540 1.59 0.93
Second 2 4.16 515.3 0.5384 1.5626 7.58 5.77
4 7.28 526.0 0.5665 2.3973 6.36 5.26
8 14.46 537.1 0.5536 1.9405 6.84 1.8969 6.74 6.82 x 1041 5.45 5.32 1.05 x 1033
16 26.55 548.4 0.5409 1.6165 6.80 5.21
32 50.00 562.0 0.5545 1.9697 6.45 5.16
64 93.42 578.0 0.5520 1.8947 6.43 5.09
Table 4 5. Conclusions

Theoretical expressions of the transformed volume fraction for the JMA model and
for the TMD when =4 K min~!

Model Peak Equation
JMA 1 x=1— exp[—3.64 x 102°T%exp(—28870.8/T)]
2 x=1—exp[—1.90 x 103°T'64exp(—82593.0/T)]
TMD 1 x=1—[1+3.11 x 10*°T>82exp(—41538.6/T)] 12331
2 x=1-[1+3.04 x 104°T'>48exp(—104638.5/T)] 18969

is a function of p and g, that allows to justify the high value of the
quoted exponent calculated for the second peak.

It should be noted that the constant D, given in Table 3, has been
calculated for each peak in both models from the corresponding
values of h and (n) using the relationship h=D!/", already quoted in
Section 2.2.

Considering Egs. (25) and (26), corresponding to the two quoted
models, the expressions of the theoretical transformed fraction, x,
as functions of the temperature, are obtained and given in Table 4
for B=4Kmin~! and for every peak. As an illustrative example,
which confirms the validity of the TMD, we represent in Fig. 4
the experimental and theoretical curves x vs. T. In this figure, it is
observed a satisfactory agreement between the experimental curve
and the theoretical curve of each model considered. This agreement
is better enough for the TMD than for the JMA model, specially in
the second peak, where the kinetic exponent has an unexpectedly
high value, which is not in agreement with the assumptions of the
JMA model.
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Fig. 4. Transformed volume fraction vs. temperature for the two exothermal peaks
at heating rate of 4K min~!: (—) experimental data; (- - -) JMA model; (- -) TMD.

The theoretical method developed enables us to study the evo-
lution with temperature of the actual transformed volume fraction
and to analyze the glass—crystal transformation mechanisms in
solid systems. This method assumes the concept of extended vol-
ume of the transformed material and the condition of randomly
located nuclei, together with the supposition of mutual interfer-
ence of regions growing from separated nuclei and the case of which
the kinetic exponent takes a value larger than 4. To analyze the
quoted case, we propose that both the nucleation frequency and the
crystal growth rate depend on time as a power law. By using these
assumptions, we have obtained a general expression for the actual
transformed volume fraction, as a function of the temperature in
non-isothermal crystallization processes. It should be noted that
the quoted power law allows to justify unexpectedly high values
for the kinetic exponent.

The kinetic parameters have been deduced by using the follow-
ing considerations: the condition of maximum crystallization rate
and the quoted maximum rate. The theoretical method developed
has been applied to the experimental data corresponding to the
crystallization kinetics of the Agg15Asg.42S€0.42 glassy alloy, which
presents two exothermic peaks. The mean values of the kinetic
exponent obtained for the second peak are (n)=5.32 and (n)=6.74
in the J]MA model and in the TMD, respectively. The first one does
not fulfil the assumptions of the corresponding model, whereas the
second one is justified by means of TMD’s hypotheses. Moreover,
the experimental and theoretical curves x vs. T show that the TMD
is more of agreement with the experimental data than JMA model.
These considerations allow to confirm the reliability of the theoreti-
cal model developed in order to analyze the transformation kinetics
of the studied alloy.
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