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a b s t r a c t

A procedure has been developed to obtain an evolution equation with the temperature for the actual
transformed volume fraction under non-isothermal regime and to calculate the kinetic parameters in
glassy solids. Once an extended volume of transformed material has been defined and spatially random
transformed regions have been assumed, a general expression of the extended volume fraction has been
obtained as a function of the temperature, bearing in mind the case presented in the practice of a kinetic
exponent with a larger value than 4. This unexpected value is justified assuming that both the nucleation
frequency and the crystal growth rate depend on time as a power law. Moreover, considering impinge-
ment effect and from the quoted expression, the actual volume fraction transformed has been deduced.
The kinetic parameters have been obtained, by assuming that the reaction rate constant is a temperature
function of Arrhenius type and using the following considerations: the condition of maximum crystalliza-
tion rate and the quoted maximum rate. The theoretical model developed and the Johnson–Mehl–Avrami
model have been applied to the crystallization kinetics of the Ag0.16As0.42Se0.42 glassy alloy, which presents
lass–crystal transformation
ifferential scanning calorimetry
ower law
inetic parameters

two exothermic peaks. The second peak gives for the kinetic exponent values enough larger than 4 in both
models. The quoted values do not fulfil the assumptions of the Avrami model and it is necessary to resort
to the hypotheses of the developed model to justify the unexpectedly high value of the kinetic exponent.
Moreover, the experimental curve of the transformed fraction shows a better agreement with the theo-
retical curve of the developed model than with the corresponding curve of the Avrami model, confirming

etica
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the reliability of the theor
above-mentioned glassy a

. Introduction

Although glass has been used as an artistic medium and indus-
rial material for centuries, it has been only in relatively recent years
hen the “glass science” has emerged as a field of study in its own

ight. Yet one of the most active fields of solid-state research in the
ast decades has been the study of solids that are not crystals, solids
n which the arrangement of the atoms lacks the slightest vestige

f long-range order.

The advances that have been made in physics and chemistry
f these materials, which are known as amorphous solids or non-
rystalline, have been widely appreciated within the research
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l model developed in order to analyze the transformation kinetics of the

© 2008 Elsevier B.V. All rights reserved.

ommunity. Solid-state phase transformations play an important
ole in the production of many materials. Therefore, a great impulse
as been given at the study of a general description of the kinet-

cs of phase transformations [1], and accordingly, the last 50 years
ave seen a theoretical and practical interest in the application of
alorimetric analysis techniques to the study of the quoted transfor-
ations [2–4]. Thus, the classical theory of nucleation and crystal

rowth has been developed over the last 60 years. A full develop-
ent of the theory is given by Christian [5] and a relatively recent

eview published by Kelton [6].
The calorimetric analysis techniques are very quick and need
ery small quantities of glass samples to obtain the kinetic param-
ters of a transformation. There are two thermal analysis regimes:
ne is the isothermal regime [4–7], in which glass samples are
uickly heated up and held at a temperature above glass transi-
ion temperature, and the other is so-called non-isothermal regime

http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:jose.vazquez@uca.es
dx.doi.org/10.1016/j.jallcom.2008.03.043
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8–12], in which glass samples are heated up at a fixed heating
ate. In general, an isothermal experiment takes longer times than
non-isothermal experiment, but isothermal experimental data

an be interpreted by the well-established Johnson–Mehl–Avrami
inetic equation [13–16]. On the contrary, non-isothermal exper-
ments have as an advantage, the rapidity that makes this type of
xperiments more attractive. The use of non-isothermal techniques
o study solid-state transformations and to determine the kinetic
arameters of the rate controlling processes has been increasingly
idespread. Therefore, the use of the non-isothermal regime has
roduced a large number of mathematical treatments to analyze
hermal process data.

The quoted techniques have become particularly prevalent for
he investigation of the processes of nucleation and growth that
ccur during transformation of the metastable phases in a glassy
lloy as it is heated. These techniques provide fast information on
uch parameters as: glass transition temperature, transformation
nthalpy and activation energy over a wide range of temperature
17]. In addition, the physical form and the high thermal conduc-
ivity as well as the temperature at which transformations occur
n most amorphous alloys make these transformations particularly
uited to be analyzed by a differential scanning calorimeter (DSC).

The study of crystallization kinetics in amorphous materials
y means of differential scanning calorimetry methods have been
idely discussed in the literature [6–18]. There is a large variety of

heoretical models and theoretical functions proposed to explain
he crystallization kinetics. The application of each of them depends
n the type of amorphous material studied and how it has been
ade.
In the present work, a theoretical procedure has been developed

o obtain an evolution equation with temperature for the actual
ransformed volume fraction. This equation has been obtained
earing in mind the mutual interference of regions growing from
eparated nuclei and the case in which the kinetic exponent takes
larger value than 4, which is presented in the practice, accord-

ng to the literature [19]. We justify the quoted case assuming that
oth the nucleation frequency and the crystal growth rate depend
n time as a power law [19–21]. The kinetic parameters and the
lass–crystal transformation mechanism have been deduced from
SC experiments, using the above-mentioned equation and assum-

ng a non-isothermal regime.
Moreover, this work applies the theoretical model developed

TMD) and the Johnson–Mehl–Avrami (JMA) model for the anal-
sis of the crystallization kinetics of the Ag0.16As0.42Se0.42 glassy
emiconductor, which presents two exothermic peaks. The values
f the kinetic exponent obtained for the second peak in both models
re enough larger than 4. It should be noted that the quoted TMD
llows to justify the obtained value, whereas a value of the kinetic
xponent cannot be larger than 4, according to JMA model.

Besides, the experimental and theoretical curves of the trans-
ormed volume fraction, x, vs. temperature, T have been compared
or every model considered. The mentioned curves show a better
greement in the case of the TMD than the curves correspond-
ng to the JMA model, confirming the reliability of the theoretical

odel developed to describe the glass–crystal transformation of
he studied alloy.

. Theoretical basis
.1. Nucleation, crystal growth and volume fraction transformed

The theoretical basis to interpret DSC results is provided by the
ormal theory of transformation kinetics [14–16,22–24]. This for-

al theory supposes that the crystal growth rate, in general, is

o
o
o

q

and Compounds 471 (2009) 44–51 45

nisotropic, and therefore, the volume of a region originating at
ime t = (1 − ˛)� (� being the nucleation period and where ˛ is a
arameter equal to zero in the case of continuous nucleation, and
qual to the unit in the case of “site saturation”[25]) is then.

� = g
∏

i

∫ t

(1−˛)�

ui(t
′)dt′ (1)

here ui(t′) (i = 1, 2, 3) represents the principal growth veloci-
ies in the three mutually perpendicular directions, the expression

i

∫ t

(1−˛)�
ui(t′)dt′ condenses the product of the integrals corre-

ponding to the values of the above quoted subscript i and finally
is a geometric factor, which depends on the dimensionality and

hape of the crystal growth, and therefore, its dimension equation
an be expressed as

g] = [L]3−i ([L] is the length)

Defining an extended volume of transformed material and
ssuming spatially random transformed regions [26–28], the ele-
ental extended volume fraction, dxe, in terms of nucleation

requency per unit volume, Iv(�), is expressed as

xe = [˛dN + (1 − ˛)IV(�)d�]��

= g[˛dN + (1 − ˛)IV(�)d�]
∏

i

∫ t

(1−˛)�

ui(t
′)dt′ (2)

here dN is the elemental number of nuclei existing per unit vol-
me.

When the crystal growth rate is isotropic, ui = u, an assumption,
hich is in agreement with the experimental evidence, since in
any transformations the reaction product grows approximately

s spherical nodules [5], Eq. (2) can be written as

xe = g [˛dN + (1 − ˛)IV(�)d�]

[∫ t

(1−˛)�

u(t′)dt′
]m

(3)

here m is an exponent related to the dimensionality of the crystal
rowth.

It should be noted that over a sufficiently limited range of
emperature (such as the range of transformation peaks in DSC
xperiments) the quantities IV(�) and u(t) may be considered to
ave an Arrhenian temperature dependence [28]. In this case, the
inetic exponent is n = m + 1 in continuous nucleation processes
nd n = m in “site saturation” processes. Accordingly, the maximum
alues of the quoted exponent are 4 and 3, respectively [29]. Never-
heless, in the practice major values are obtained, which according
o the literature [30,31] suggest a very high nucleation rate with
hree-dimensional growth. Besides, these high values of kinetic
xponent can be justified in accordance with the literature [19–21]
f IV(�) and u(t) depend on time as a power law.

It is interesting to denote that, according to the literature [19],
here are two major competing ideas, dating back over 60 years, that
ry to provide overall models to describe the origin of crystallization
extures. The quoted ideas are known as oriented nucleation and
riented growth, and were proposed by Burgers and Louwerse [32]
n 1931 and by Barret [33] in 1940, respectively. The essential basis
f oriented nucleation is that new grains with the orientation of the
ajor component of the crystallization texture nucleate at a much

igher frequency than do grains of all other orientations. In the case

f oriented growth, the nuclei already produced with the required
rientation for the crystallization grow faster than nuclei of other
rientations [19].

With the aim to explain the probable physical nature of the
uoted time-dependence for the nucleation frequency and the crys-
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al growth rate, we assume the above-mentioned ideas for the
lass–crystal transformation model that will be developed in this
ork. Thus, it is possible to consider, according to literature [19],

hat nucleation and crystal growth processes, probably elapse with
ccelerating rates. Accordingly, theses processes are non-linear and
he quantities IV and u must depend explicitly on time. This depen-
ence can be expressed as a power law in accordance with the

iterature [19–21]. As it can be observed in Eq. (3), the quoted time-
ependence increase the value of the kinetic exponent, a fact that
llows to justify unexpectedly high values, larger than 4, which
t times are obtained for the quoted exponent in thermal exper-
ments.

Bearing in mind the above-mentioned physical considerations
e propose for IV(�) and u(t) the following expressions

V(�) = IV0�p exp
(

− EN

RT

)
(4)

nd

(t) = u0tq exp
(

− EG

RT

)
(5)

here EN and EG are the effective activation energies for nucleation
nd growth, respectively, p and q are the exponents for each of the
uoted power laws and the dimension equations of the coefficients

V0 and u0 can be expressed as

IV0] = [L]−3[T]−(p+1), [u0] = [L][T]−(q+1) ([T] is the time)

In the present work, a theoretical method has been developed
o integrate Eq. (3) under the quoted conditions, to obtain a general
xpression for the extended volume fraction, xe, and to justify high
alues of kinetic exponent in non-isothermal processes.

Accordingly, assuming a constant heating rate, ˇ = dT/dt, and
onsidering Eqs. (4) and (5), Eq. (3) becomes

xe = gum
0

ˇm(q+1)

[
˛dN + (1 − ˛)IV0

ˇp+1
Tp

� e−EN/RT� dT�

]

×
(∫ T

T�

T ′qe−EG/RT ′
dT ′

)m

(6)

� being the temperature corresponding to (1 − ˛)� time.
When the case of continuous nucleation, ˛ = 0, is considered, the

ntegration of Eq. (6) yields

e = gum
0 IV0

ˇm(q+1)+p+1

∫ T

T0

Tp
� e−EN/RT�

(∫ T

T�

T ′qe−EG/RT ′
dT ′

)m

dT�

= P1

∫ T

T0

Tp
� e−EN/RT� Im

1 dT� (7)

By the substitution y′ = EG/RT′, the integral I1 of the Eq. (7) is
ransformed in an exponential integral of order 2 + q, which is a
articular case of the order r, which can be expressed, in accordance
ith the literature [34], by the alternating series

r(y, y�) =
[

− e−y′

y′r

∞∑
k=0

(−1)k(k + r − 1)!

(r − 1)!y′k

]y

y�

(8)
Accordingly, taking r = 2 + q in Eq. (8), considering that in this
ype of series the error produced is less than the first term neglected
nd bearing in mind that in most glass–crystal transformations
′ = EG/RT′ � 1, usually EG/RT′ ≥ 25 [28], it is possible to use only
he first term of the above-mentioned series, without making any

w
i

e

and Compounds 471 (2009) 44–51

ppreciable error, and the integral I1 can be written as

1 = R

EG

[
Tq+2 exp

(
− EG

RT

)
− Tq+2

� exp
(

− EG

RT�

)]
(9)

n expression, which is substituted in Eq. (7) and by means of the
xpansion of the binomial-potential series [34], one obtains

e = P1

(
R

EG

)m m∑
s=0

(−1)s(
m
s )(Tq+2e−EG/RT )

m−s

×
∫ T

T0

Tp+s(q+2)
� e−(EN+sEG)/RT� dT�

= P1

(
R

EG

)m m∑
s=0

(−1)s(
m
s )(Tq+2e−EG/RT )

m−s
I2 (10)

By the substitution z� = (EN + sEG)/RT� , the integral I2 is trans-
ormed in an exponential integral of order p + 2 + s(q + 2), which is
valuated as the integral I1, according to the literature [34], yielding

2 = R

EN + sEG
Tp+2+s(q+2) exp

[
(−EN + sEG)

RT

]
(11)

f it is assumed that T0 � T, so that z0 can be taken as infin-
ty. This assumption is justifiable for any thermal treatment
hat begins at a temperature where nucleation and crystal
rowth are negligible, i.e., below the glass transition tempera-
ure, Tg, [28]. Substituting Eq. (11) into Eq. (10), introducing the

arameter QA = R(R/EG)m∑m
s=0[(−1)s/(EN + sEG)](

m
s ) and defining

reaction rate constant KA = [gIV0um
0 e−(EN+mEG)/RT ]1/[m(q+1)+p+1] =

A0e−E/RT , with an Arrhenian temperature dependence, the
xtended volume fraction, under non-isothermal regime, is
xpressed as

e = QA

(
KAT2

ˇ

)n

Tm+1−n (12)

hich is a general expression in the case of continuous nucleation
rocesses. It should be noted that E is the overall effective activa-
ion energy, KA0 the frequency factor with a dimension equation
T]−1([T] is the time) and the kinetic exponent is written as

= m(q + 1) + p + 1 (13)

The quoted general expression condenses the four possible cases
or a continuous nucleation process under non-isothermal regime,
amely: p /= 0, q /= 0; p = 0, q /= 0; p /= 0, q = 0 and p = q = 0.

On the other hand, if the case of “site saturation”, ˛ = 1, is con-
idered Eq. (6) becomes

e = gN0um
0

ˇm(q+1)

[∫ T

T0

T ′qe−EG/RT ′
dT ′

]m

= P2Im
3 (14)

here N0 is the number of pre-existing nuclei in the volume of the
ample and T0 is the starting temperature.

By means of a similar calculation process to that of integral I1,
ntegral I3 is evaluated, resulting in

3 =
(

EG

R

)q+1
[

e−y′

(y′)q+2

]y

y

= R

EG
Tq+2 exp

(−EG

RT

)
(15)
0

here the quoted assumption T0 � T, so that y0 can be taken as
nfinity, is again considered [28].

Substituting Eq. (15) into Eq. (14), introducing the param-
ter QB = (R/EG)m and defining a reaction rate constant KB =
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gN0um
0 e−mEG/RT )1/m(q+1) = KB0e−E/RT , with an Arrhenian tem-

erature dependence, the extended volume fraction, under
on-isothermal regime, is expressed as

e = QB

(
KBT2

ˇ

)n

Tm−n (16)

hich is a general expression in the case of “site saturation” pro-
esses, where KB0 is the frequency factor with a dimension equation
T]−1 and the kinetic exponent is written as

= m(q + 1) (17)

The quoted general expression condenses the two possible
ases for a “site saturation” process under non-isothermal regime,
amely: q /= 0 and q = 0.

Bearing in mind the ˛ parameter, already quoted, Eqs. (12) and
16) can be condensed as

e = Q

(
KT2

ˇ

)n

Tm−n+1−˛ (18)

ith the parameter Q = (R/EG)m{R
∑m

s=0[(−1)s/(EN + sEG)](
m
s )}

1−˛
,

he reaction rate constant
K =

{
gum

0 N˛
0 I1−˛

V0 e−[(1−˛)EN+mEG]/RT
}1/n = K0e−E/RT and the

inetic exponent is given as

= m(q + 1) + (1 − ˛)(p + 1) (19)

It should be noted that Eq. (18) is a general expression for the
xtended volume fraction, when non-isothermal treatments are
erformed, both for continuous nucleation and for “site saturation”
rocesses.

By using the explicit form of Arrhenian temperature dependence
or the reaction rate constant Eq. (18) can be rewritten as

e = QKn
0

(
T2

ˇ

)n(
nE

R

)m−n+1−˛
[(

RT

nE

)m−n+1−˛

exp
(

− nE

RT

)]
(20)

Given that, asymptotically, for nE � RT the exponential term in
q. (20) changes much faster compared to the power law, in square
rackets, the latter can be treated almost as a constant, in accor-
ance with the literature [24], and then Eq. (20) becomes

e = D

(
T2

ˇ

)n

exp
(

− nE

RT

)
(21)

here D can be considered as a constant, with a dimension equation
�T]−n ([�] is the temperature).

On the other hand, it is well known the impingement effect
n the glass–crystal transformations. In accordance with the lit-
rature [5], to obtain a general kinetic equation for the actual
ransformed volume fraction, the mutual interference of regions
rowing from separated nuclei must be considered. When two such
egions impinge on each other it is possible that the two regions
evelop a common interface, over which growth ceases, although

t continues normally elsewhere. In this sense, following the liter-
ture [5,35] and considering the hypothesis of random nucleation
t is possible to write the relationship between the actual volume,
b, and the extended volume, Ve, in the form

Vb =
(

1 − Vb

V

)�i

dVe = (1 − x)�i dVe (22)
here x = Vb/V is the actual transformed volume fraction, V is the
olume of the whole assembly, � i is termed the impingement expo-
ent, and considering dVe = Vdxe, Eq. (22) can be expressed as

1 − x)−�i dx = dxe (23)
w
t

and Compounds 471 (2009) 44–51 47

Defining an impingement factor ıi = (� i − 1)−1, the general solu-
ion of the preceding differential equation is given as

= 1 − (1 + xeı−1
i

)
−ıi (24)

By substituting Eq. (21) into Eq. (24), one obtains

= 1 −
[

1 + 1
ıi

D

(
T2

ˇ

)n

exp
(

− nE

RT

)]−ıi

(25)

n equation for the actual transformed volume fraction correspond-
ng to the above-developed model.

It should be noted that if the impingement exponent, � i = 1,
i → ∝, and considering Eq. (21) Eq. (24) becomes

= 1 − lim
ıi→∞

[
1 +

(
ıi

xe

)−1
]−ıi

= 1 − exp(−xe) = 1 − exp

[
−D

(
T2

ˇ

)n

exp
(

− nE

RT

)]
(26)

orresponding to the JMA model.
In the following section, we will be deducing that the values

f the constant D and the kinetic exponent are different for each
odel, whereas the value of the activation energy is the same in

oth models.

.2. Calculating the kinetics parameters

It is well known that between the proposed methods in the lit-
rature [28] to analyze the crystallization kinetics in glass-forming
iquids the differential methods play an important role. From this
oint of view, the crystallization rate is obtained in this work, taking
he derivative of the actual crystallized volume fraction [Eq. (24)]
ith respect to time, resulting in

dx

dt
= (1 + xeı−1

i
)
−(ıi+1) dxe

dt
(27)

The maximum crystallization rate is found making d2x/dt2 = 0,
ielding

d2xe

dt2

∣∣∣∣
p

=
(

ıi + 1
ıi

)
(1 + xe|pı−1

i
)
−1

(
dxe

dt

)2
∣∣∣∣
p

(28)

here the subscript p denotes the quantity values corresponding
o the maximum crystallization rate.

Taking the first and the second derivative of the extended vol-
me fraction [Eq. (21)] with respect to time, substituting both

nto Eq. (28), and dividing the resulting equation by expression
nˇ2−nT2n−2

p exp(−nE/RTp), and finally extracting common factor
in the left hand side, the quoted Eq. (28) can be rewritten as(

2 + E

RTp

)2

− 2

(
1 + E

RTp

)
= n

(
2 + E

RTp

)2

D

(
T2

p

ˇ

)n

e−nE/RTp

×
(

ıi + 1
ıi

)
(1 + xe|pı−1

i
)
−1

(29)

nd dividing by expression n(2 + E/RTp)2, Eq. (29) becomes(
ıi + 1

ıi

)
(1 + xe|pı−1

i
)
−1

D

(
T2

p

ˇ

)n

e−nE/RTp
= 1 − 2
n

(1 + E/RTp)

(2 + E/RTp)2
(30)

hich relates the crystallization kinetics parameters E, n and ıi to
he quantity values that can be determined experimentally, and
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of a glass–crystal transformation. The data of the thermograms for
the different heating rates, ˇ, quoted in Section 3, show values of
the quantities Tc and Tp, which increase with increasing ˇ for both
peaks, a property, which has been reported in the literature [37].

Table 1
Characteristic temperatures and enthalpies of the crystallization process of the
Ag0.16As0.42Se0.42 glassy alloy

Parameter Experimental value
8 J.L. Cárdenas-Leal et al. / Journal of

hich correspond to the maximum crystallization rate. Bearing in
ind Eq. (21) and that in most transformation reactions E/RTp � 1

usually E/RTp ≥ 25), an assumption already quoted, Eq. (30) yields

ıi + 1
ıi

)
(1 + ı−1

i
xe|p)

−1
xe|p = 1 (31)

Substituting in Eq. (31) the expression xe|p taken from Eq. (24)
nd by making explicit the quantity 1 − xp, one obtains

− xp =
(

ıi

ıi + 1

)ıi

(32)

n expression from which, the impingement factor, ıi, can be eval-
ated in a set of exotherms taken at different heating rates, by
sing a method of successive approximations (e.g. secant method).
he corresponding mean value may be taken as the most probable
alue of the impingement factor in the glass–crystal transformation
rocess.

Substituting in Eq. (31) the expression (1 + ı−1
i

xe|p)
−1

taken
rom Eq. (24), bearing in mind Eq. (32) yields xe|p = 1, and then
he logarithmic form of Eq. (21) is expressed as

n
T2

p

ˇ
= E

RTp
− ln h (33)

hich is a linear function, whose slope and intercept give the overall
ffective activation energy, E, and the quantity h = D1/n [see Eqs. (20)
nd (21)], which is related to the probability of effective collisions
or the formation of the activated complex.

Besides, substituting in Eq. (27) for the maximum crystallization
ate, the expression (1 + ı−1

i
xe|p)

−(ıi+1)
and (dxe/dt)|p taken from

qs. (24) and (21), bearing in mind that xe|p = 1 and considering
he above quoted assumption E/RTp � 1, one obtains

= RT2
p

dx

dt

∣∣∣
p
[(1 − xp)(ıi+1)/ıi ˇE]−1 (34)

n expression which allows the kinetic exponent, n, to be calcu-
ated in a set of exotherms taken at different heating rates. The
orresponding mean value may be considered as the most probable
alue of the kinetic exponent of the transformation process.

The constant D can be evaluated from the quantity h, already
uoted, Eq. (33), and the kinetic exponent, n. It should be noted
hat the quoted constant is related to frequency factor, K0, of the
lass–crystal transformation process, according to Eqs. (20) and
21).

It is important to mark that in JMA model, where it is assumed
hat Iv and u do not depend explicitly on the time (p = q = 0),
= m + 1 − ˛, according to Eq. (19), and h = D1/n = Q1/nK0 in Eq. (33)

see Eqs. (20) and (21)]. Besides, considering Eq. (32), and Eq. (34)
ecomes

= RT2
p

dx

dt

∣∣∣
p
(0.37ˇE)−1 (35)

n expression which allows the kinetic exponent, n, to be calculated
n the quoted model.

. Experimental

The Ag0.16As0.42Se0.42 glassy semiconductor was prepared in bulk form by the
tandard melt quenching method. High-purity (99.999%) silver, arsenic and sele-
ium in appropriate atomic percentage proportions were weighed and introduced
nto a quartz glass ampoule (6 mm diameter). The content of the ampoule (7 g per
atch) was sealed at a pressure of 10−2 Pa and heated in a rotating furnace at around
125 K for 120 h and submitted to a longitudinal rotation of 1/3 rpm in order to
nsure the homogeneity of the molten material. It was then immersed in a recepta-
le containing water with ice in order to solidify the material quickly, avoiding the
rystallization of the compound.

T
T
�
�

ig. 1. Typical DSC trace of Ag0.16As0.42Se0.42 semiconductor alloy at a heating rate
f 16 K min−1. The hatched area shows AT, the area between Ti and T.

The amorphous state of the material was checked through a diffractometric
-ray scan, in a Bruker AXS, D8 Advance model diffractometer. The homogeneity
nd composition of the sample were verified through scanning electron microscopy
SEM) in a JEOL, scanning microscope JSM 820. The thermal behaviour was investi-
ated using a Perkin-Elmer DSC7 differential scanning calorimeter with an accuracy
f ±0.1 K. Temperature and energy calibrations of the instrument were performed,
or each heating rate, using the well-known melting temperatures and melting
nthalpies of high-purity zinc and indium supplied with the instrument [36].

The samples weighing about 10 mg were crimped in aluminium pans, and
canned from room temperature through their glass transition temperature, Tg, at
ifferent heating rates of 2, 4, 8, 16, 32 and 64 K min−1. An empty aluminium pan
as used as reference, and in all cases a constant 60 ml min−1 flow of nitrogen was
aintained in order to provide a constant thermal blanket within the DSC cell, thus

liminating thermal gradients and ensuring the validity of the applied calibration
tandard from sample to sample. The glass transition temperature, Tg, was consid-
red as a temperature corresponding to the inflection of the lambda-like trace on
he DSC scan, as shown in Fig. 1.

The crystallized fraction, x, corresponding to an exothermic peak at any tem-
erature, T, is given by x = AT/A, where A is the total area limited by the exotherm of
he quoted peak between the temperature, Ti , where the crystallization just begins
nd the temperature, Tf , where the crystallization is completed and AT is the area
etween the initial temperature and a generic temperature T, see Fig. 1.

. Results

The typical DSC trace of Ag0.16As0.42Se0.42 semiconductor glass
btained at a heating rate of 16 K min−1 and plotted in Fig. 1 shows
wo exothermic peaks clearly separated. Both peaks exhibit two
haracteristic phenomena, which are resolved in the temperature
egion studied. The first one corresponds to the extrapolated onset
rystallization temperature, Tc, (Tc1 = 478.3 K for the first peak and
c2 = 539.8 K for the second peak) and the last one to the peak tem-
erature of crystallization, Tp, (Tp1 = 495.4 K for the first peak and
p2 = 548.4 K for the second peak), of the above-mentioned semi-
onductor glass. The quoted DSC trace shows the typical behaviour
First peak Second peak

i (K) 459.9–476.5 508.5–553.8
p (K) 481.2–508.5 515.3–578.0
T (K) 37.6–62.4 16.6–38.6
H (mcal mg−1) 4.2–8.2 1.4–4.0
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Bearing in mind this fact we have considered the TMD, where
both Iv and u depend on time as a power law [19–21] of which
exponents are p and q, respectively [see Eqs. (4) and (5)]. For the
model lately quoted Eq. (19) is obtained, where the kinetic exponent

Table 2
Straight regression lines (SRL) fitted to values of the ln (T2

p /ˇ) and kinetic parameters
of the two peaks analyzed
ig. 2. Crystallization rate vs. temperature for the first exothermal peak at different
eating rates.

.1. Glass–crystal transformation

The kinetics analysis of the crystallization reactions is related
o the knowledge of the reaction rate constant as a function of the
emperature. In this sense, a great number of analytical methods,
roposed in the literature to describe the above-mentioned reac-
ions, assume that the reaction rate constant can be represented by

eans of an Arrhenius type temperature dependence [28,38]. This
ssumption involves that the maximum values of the kinetic expo-
ent are 4 and 3 in continuous nucleation and in “site saturation”
rocesses, respectively [29]. Nevertheless, in the practice major val-
es of the quoted exponent are obtained, which according to the

iterature [30,31] suggest a very high nucleation rate with three-
imensional growth. Bearing in mind this assumption we analyze
he glass–crystal transformation kinetics of Ag0.16As0.42Se0.42 alloy
n accordance with the theory developed in Section 2.

With the aim to analyze the crystallization kinetics of the above-
entioned alloy, the variation intervals of the quantities described

y the thermograms for the different heating rates, quoted in Sec-
ion 3, and corresponding to the two peaks of crystallization, are
btained and given in Table 1, where Ti and Tp are the tempera-
ures at which crystallization begins and that corresponding to the

aximum crystallization rate, respectively, and �T is the width of
ach crystallization peak. The crystallization enthalpy �H is also
etermined for each of the heating rates.

The limited area by each peak of the DSC curve is directly propor-
ional to the total amount of crystallized alloy. The ratio between
he ordinates of the exotherm and the total area of a peak gives the
orresponding crystallization rates, which make it possible to plot
he curves dx/dt vs. T for the different heating rates. As an illustra-
ive example, the quoted curves corresponding to the first peak of
lloy studied are represented in Fig. 2. It should be noted that the
dx/dt)|p values increase in the same proportion that the heating
ate, a property which has been widely discussed in the literature

39].

From the experimental data the plots of ln(T2
p /ˇ) vs. 1/Tp at

ach heating rate have been drawn and also the straight regression
ine (SRL) shown in Fig. 3 for each one of the peaks of the quoted

P

F
S

r

ig. 3. Experimental plots of ln(T2
p /ˇ) vs. 1/Tp and straight regression lines of the

g0.16As0.42Se0.42 alloy (ˇ in K s−1): (�) first peak; (©) second peak.

lloy. From the slopes and intercepts of these experimental lines,
ccording to Eq. (33), both the overall effective activation energy, E,
nd the quantity h are obtained for each peak of the glass–crystal
ransformation, which, together with the SRL equations, are pre-
ented in Table 2. Moreover, the experimental data (dx/dt)|p, Tp

nd xp, shown in Table 3, allow to obtain for each peak of crys-
allization the parameters ıi and n for TMD and the parameter n for
MA model.

For the first model, by using Eq. (32) and following the secant
ethod of successive approximations, the impingement factor has

een evaluated for each heating rate and for the two peaks obtained.
he calculation of the kinetic exponent has been carried out for each
eating rate, by using Eq. (34), from the quoted experimental data,
ogether with the value of the activation energy, given in Table 2 for
ach peak, and the corresponding results of the impingement factor.
he values both for ıi and for n are also given in Table 3. Bearing
n mind that the calorimetric analysis is an indirect method which
nly makes it possible to obtain mean values for the parameters
hich control the mechanism of a reaction, ıi and n, the mentioned
ean values have been calculated and given in Table 3. For the

econd model, the kinetic exponent has been calculated in the same
ay but using Eq. (35). The values obtained and the corresponding
ean value for each peak are also given in Table 3.
We have examined the mean values of the kinetic exponent

or every peak according to the JMA model and we find a value
n〉 = 0.98 for the first peak, which fulfils suitably the assumptions
f the quoted model, whereas the second peak gives an unexpect-
dly high value of the kinetic exponent, 〈n〉 = 5.32. This last value is
ot in agreement with the assumptions of the JMA model, since for a
onstant rate of growth, u, of new grains and a constant rate of their
ucleation, Iv, the expected value of the kinetic exponent will be 4

alling 3 if all new grains nucleate at the start of the glass–crystal
ransformation, giving “site saturation” [25,40].
eak SRL E (kcal mol−1) h (K s)−1 r

irst 29.4607 × 103/Tp − 45.6028 58.92 6.38 × 1019 0.9969
econd 15.5240 × 103/Tp − 14.2902 31.05 1.61 × 106 0.9986

is the correlation coefficient.
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Table 3
Maximum crystallization rate, corresponding temperature and crystallized volume fraction, kinetic exponent and impingement factor for the different heating rates and for
the two exothermic peaks

Peak ˇ (K min−1) 103(dx/dt)|p (s−1) Tp (K) xp TMD JMA

ıi n 〈ıi〉 〈n〉 D (K s)−n n 〈n〉 D (K s)−n

First 2 1.70 481.2 0.5512 1.8724 1.37 1.08
4 3.12 485.0 0.5392 1.5802 1.32 1.01
8 6.27 490.7 0.5117 1.1349 1.48 1.2231 1.41 8.41 × 1027 1.04 0.98 2.56 × 1019

16 10.92 495.4 0.5022 1.0240 1.35 0.92
32 21.06 502.5 0.5066 1.0729 1.33 0.92
64 41.69 508.5 0.4545 0.6540 1.59 0.93

Second 2 4.16 515.3 0.5384 1.5626 7.58 5.77
4 7.28 526.0 0.5665 2.3973 6.36 5.26
8 14.46 537.1 0.5536 1.9405 41 33

16 26.55 548.4 0.5409 1.6165
32 50.00 562.0 0.5545 1.9697
64 93.42 578.0 0.5520 1.8947

Table 4
Theoretical expressions of the transformed volume fraction for the JMA model and
for the TMD when ˇ = 4 K min−1

Model Peak Equation

JMA 1 x = 1 − exp[−3.64 × 1020T1.96exp(−28870.8/T)]
2 x = 1 − exp[−1.90 × 1039T10.64exp(−82593.0/T)]
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MD 1 x = 1 −[1 + 3.11 × 1029T2.82exp(−41538.6/T)]−1.2331

2 x = 1−[1+3.04 × 1049T13.48exp(−104638.5/T)]−1.8969

s a function of p and q, that allows to justify the high value of the
uoted exponent calculated for the second peak.

It should be noted that the constant D, given in Table 3, has been
alculated for each peak in both models from the corresponding
alues of h and 〈n〉 using the relationship h = D1/n, already quoted in
ection 2.2.

Considering Eqs. (25) and (26), corresponding to the two quoted
odels, the expressions of the theoretical transformed fraction, x,

s functions of the temperature, are obtained and given in Table 4
or ˇ = 4 K min−1 and for every peak. As an illustrative example,
hich confirms the validity of the TMD, we represent in Fig. 4

he experimental and theoretical curves x vs. T. In this figure, it is
bserved a satisfactory agreement between the experimental curve
nd the theoretical curve of each model considered. This agreement
s better enough for the TMD than for the JMA model, specially in

he second peak, where the kinetic exponent has an unexpectedly
igh value, which is not in agreement with the assumptions of the

MA model.

ig. 4. Transformed volume fraction vs. temperature for the two exothermal peaks
t heating rate of 4 K min−1: (—) experimental data; (· · ·) JMA model; (– –) TMD.

n
s
t
i
T
c
o

A

(
a
s

R

6.84 1.8969 6.74 6.82 × 10 5.45 5.32 1.05 × 10
6.80 5.21
6.45 5.16
6.43 5.09

. Conclusions

The theoretical method developed enables us to study the evo-
ution with temperature of the actual transformed volume fraction
nd to analyze the glass–crystal transformation mechanisms in
olid systems. This method assumes the concept of extended vol-
me of the transformed material and the condition of randomly

ocated nuclei, together with the supposition of mutual interfer-
nce of regions growing from separated nuclei and the case of which
he kinetic exponent takes a value larger than 4. To analyze the
uoted case, we propose that both the nucleation frequency and the
rystal growth rate depend on time as a power law. By using these
ssumptions, we have obtained a general expression for the actual
ransformed volume fraction, as a function of the temperature in
on-isothermal crystallization processes. It should be noted that
he quoted power law allows to justify unexpectedly high values
or the kinetic exponent.

The kinetic parameters have been deduced by using the follow-
ng considerations: the condition of maximum crystallization rate
nd the quoted maximum rate. The theoretical method developed
as been applied to the experimental data corresponding to the
rystallization kinetics of the Ag0.16As0.42Se0.42 glassy alloy, which
resents two exothermic peaks. The mean values of the kinetic
xponent obtained for the second peak are 〈n〉 = 5.32 and 〈n〉 = 6.74
n the JMA model and in the TMD, respectively. The first one does
ot fulfil the assumptions of the corresponding model, whereas the
econd one is justified by means of TMD’s hypotheses. Moreover,
he experimental and theoretical curves x vs. T show that the TMD
s more of agreement with the experimental data than JMA model.
hese considerations allow to confirm the reliability of the theoreti-
al model developed in order to analyze the transformation kinetics
f the studied alloy.
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