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ABSTRACT The analysis of variance is one of the most commonly used algorithms for detect-
ing focalized zones in digital images and is an entry point to extended focalization techniques
beyond those established by optical laws. This article analyses the dependence of the red, green,
and blue (RGB) and lightness, hue, and saturation (LHS) components when used as the basis for
applying an algorithm to obtain images with extended depth of field. Also, an algorithm developed
by the authors is described and the dependence of the final result is shown according to the
chromatic components used as the variables. Finally, a methodology is defined based on the
study of second variance in relation to the number of images and pixels of the chromatic coordi-
nates to decide which to use as the basis for the calculation. Microsc. Res. Tech. 72:403–410,
2009. VVC 2009 Wiley-Liss, Inc.

INTRODUCTION

Solving the problem of depth of field limitations
when using high magnification lenses is of great inter-
est in fields such as Medicine or Biomedicine (Amar
et al., 2008; Chen et al., 2008; Iliev and Wouters, 2007;
Mironova et al., 2007; Scalfi-Happ et al., 2007), Biology
(Heisterkamp et al., 2007; Scrimgeour et al., 2007;
Zhang et al., 2007) or Material Science (Hashimoto
et al., 2007; Nair et al., 2008; Snyder et al., 2007; Wick-
ramasinghe et al., 2006). Different techniques have
been proposed in the recent years to obtain images
with an extended depth of field, which is the range of
distance in front of and behind an object focused by an
optical instrument within which other objects will also
appear clear and sharply defined in the resulting
image. This is a particularly relevant magnitude in op-
tical microscopy, especially when working at high mag-
nification, due to its small value in the visible spectral
range. Basically, the previously proposed methods can
be placed into two groups: (a) those that improve the
optical parameters of the instrumentation and (b)
those that, through the use of mathematical algorithms
applied to a stack of digital images, are able to detect
the focalized sectors of each image, which are then
merged to construct an image with an extended depth
of field.

Normally, optical methods are based on the improve-
ment of the optical transfer function (OTF) of the defo-
cused system (Widjanarko and Hardie, 2002), increas-
ing the optical response at high spatial frequencies.
McCrikerd (1971) has shown that it is possible to use
an annular aperture to extend the spatial frequency
response of the modulation transfer function (MTF).
These methods provide on-line improvements, but
involve extra work and the use of expensive, new com-
ponents in the optical system used.

Using the other approach, Sugimoto and Ichioka
(1985) show that better results are obtained using algo-
rithms to treat the images (in this case an algorithm
based on the study of local variance) rather than using

optical methods to improve the OTF. These methods do
not generate instantaneous results, but do offer greater
flexibility and do not require the microscope’s optical
elements to be modified. The common working basis of
these methods can be summarized in three steps: (a)
obtaining a set of images of the object with different
lens-object distances, either in an automated or man-
ual way, (b) mathematical treatment of the images
obtained to detect and extract the focalized sectors,
and (c) merging the focalized sectors and generating an
image with an extended depth of field.

The algorithms that these methods use are based on
the maximization of a function from which it is possible
to detect the focalized sectors. For example, Widja-
narko and Hardie (2002) use the Fourier transform as
a function. Burt and Lolzcynski (1993) proposed a
method based on variance and the use of a wavelet
transform. Li et al. (1995) propose a method in which a
wavelet maximal function is used as the selection crite-
ria. Valdecasas et al. (2001) use a method that is basi-
cally a hybrid of Burt and Lolzcynski’s and Li et al.’s
methods. Itoh et al. (1989) developed two algorithms,
one based on the measurement of local variance and
the other based on the nondirectional difference opera-
tor. González and Woods (1992) and Castleman (1996)
use the Sobel Operator, which is an edge detector with
some noise smoothing incorporated that returns a mea-
sure of the strength of an edge being present at a given
pixel. Sugimoto and Ichioka (1985) developed an algo-
rithm which is also based on the study of local
variance. Pieper and Korpel (1983) developed three
algorithms by studying the intensity of each pixel (the
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focal point will coincide with a maximum or minimum
intensity value), the variance and a nondirectional dif-
ference operator. The use of variance is a recurrent
resource for resolving the problem of distance detection
in autofocus systems. Some of the authors of this arti-
cle began to gain experience in this field with the devel-
opment of a method to achieve precise focalization of a
laser beam to be applied to an LBIC system (Laser
Beam Induced Current) for the study of photovoltaic
slides by analyzing line scans over sharp structures
(Martin et al., 2004; Poce-Fatou et al., 2002).

Many of the methods described earlier were proposed
before the mass use of computers with powerful calcu-
lation capacities and which were not fully developed in
terms of the digital treatment of color images. These
methods apply their algorithms on monochrome and
polychrome images in which the only calculation vari-
able is intensity or brightness and avoiding the treat-
ment of color spaces.

A color space is a three-dimensional space used to
represent any color in an organized way by choosing
three coordinates that describe it (Wyszecki and Stiles,
1982). In computerized image treatment, the two most
commonly used models are the red, green, and blue
(RGB) and lightness, hue, and saturation (LHS) mod-
els. The former is used in most chromatic reproduction
technology in which each color point is represented by
the intensity of three chromatic transmitters emitting
in red, green and blue (Foley, 1982). The intensity scale
is usually divided into 256 sectors so the model is
shaped like a Cartesian space with finite dimensions.
In contrast, there is the family of LHS models, which
essentially involve a conversion from Cartesian to cy-
lindrical coordinates. This model is the one usually
used for controlling the variable parameters of chro-
matic visualization devices as it adapts best to the way
the human eye works (Levkowitz and Herman, 1993).
The L coordinate is used in monochromatic representa-
tions, and thus, is the variable that is usually used for
calculus algorithms. This variable does not correspond
exactly with any of those used in the RGB model, but it
is the G coordinate that carries most weight due to the
human eye’s greater sensitivity to the wavelength asso-
ciated with that color.

For this reason, many algorithms developed do not
cover all the possibilities as they do not take into con-
sideration the individual influence of the RGB or LHS
component of each pixel. This is extremely important
since, depending on the image to be treated, it is possi-
ble to reach different results according to the chromatic
coordinates of each pixel. Although the set of six chro-
matic variables is not a system of independent coordi-
nates due to the subsets RGB and LHS being linked
via mathematical expressions, it is possible for them to
be considered quasi-independent due to the fact that
the transformation relationship from one subset to
another is not lineal and small variations from one of
the primary colors of one of the subsets can greatly
affect another from the other subset. However, it must
be clarified that only a set of three of these six variables
is truly independent. Thus, it is possible that an object
with small variations in its chromaticity values (H �
cte.) has very different values from luminosity (L =
cte.), and saturation (S = cte.) variables and any of the
RGB coordinates. Therefore, the final results may

depend on the chromatic coordinates used, and the
user of the methodology must establish which color
component it is most interesting to study for each set of
images of the object, depending on its intrinsic color
characteristics. Alternatively, it is possible to establish
criteria for deciding which coordinates to use. In this
article, we propose a method for making this decision
based on the study of second variance.

MATERIALS ANDMETHODS

The methodology developed involves three steps: (a)
obtaining a series of K digital images with a definition
of I 3 J pixels, with each image at a different lens-
object distance so that each one contains one or more
focalized pixels of the object, (b) determining which set
of three independent chromatic coordinates (RGBLHS)
carries the greatest statistical weight in the three
dimensional physical space V(k,i,j) by maximization of
the second variance of the chromatic coordinates in
relation to the number of images and the number of
pixels, and (c) determining which pixels (i,j) of each k
image are considered to be focalized by calculating the
variance in the surroundings of each weighted pixel.

To achieve optimal results in the process of extrac-
tion and accumulation of optically focused zones in
each image it is important that the Dz separation
between each pair of consecutive images is less than
the optical depth of field, defined by the expression

DOF ¼ 2k
p

1

2n sin u
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9
>;
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where DOF is the Depth of Field, n is the refractive
index of the space in which the lens harvests photons, y
is the half angle of the observation cone and k is the
wavelength of the reference radiation, whose value is
550 nm (maximum sensitivity of the human eye and
maximum solar irradiation). Our system has been
automated so, using a MICOS SMC Pollux step-by-step
motor attached to the micrometric displacement sys-
tem of a Nikon Alphaphot YS2 microscope, it is possible
to capture images along the Z axis with a theoretical
resolution below 0.1 lm, which is a smaller interval
than the depth of field of the objective lens being used.
The images are taken using two systems: (a) an ISD
camera (model uEye UI-1460-C) with a [1/2]00; / 3.2 Mp
CMOS sensor and direct USB computer connection
and (b) a Nikon Coolpix E995 with a 1/1.800 and 3.3 Mp
sensor and delayed USB computer connection. The dif-
ferent series of images were acquired with both cam-
eras set to manual and under the same conditions
regarding focal aperture, shutter speed, magnification,
and light stability for images to be then compared cor-
rectly.

The positional coordinates (k,i,j) define the physical
space in which we move, while the value of each of
these coordinates provides the chromaticity value asso-
ciated with it. Thus, the chromatic value of the pixel
(i,j) in image k is defined as Vk,i,j .This value can in
turn be broken down into its three primary RGB com-
ponents, indicating on a scale from 0 to 255 the amount
red, green, and blue components that have to be used
to reproduce the virtual chromaticity of the pixel.
Within this framework, the Rk,i,j variable defines the
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value of the red component (R) of the chromaticity in
the spatial position defined by the indices i, j, and k.
The variance of this component for each k image is cal-
culated using the expression

r2ðRÞ ¼
XI

i¼1

XJ

j¼1
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A similar situation can be reached if, instead of RGB
components, LHS components are used. These compo-
nents are defined for the chromatic space, which uses
lightness, hue, and saturation as chromatic variables.

For a set of images, variance maximization is the
methodology which is usually used to define which
image is optimally focalized (Valdecasas et al., 2001).
Applying this methodology to the set of images result-
ing from their breakdown into RGB and LHS form
makes it possible to observe that the image with the
best focalization is not always the same and depends
on the color coordinate used. In Figure 1, it is possible
to observe a graphic representation of the variance of a
set of 19 images obtained for each of the chromatic
coordinates. It can be appreciated that the image with
the greatest variance value is not the same for all the
chromatic variables. The best focalized image is num-
ber 12 for variables R, B, and L, while it is image 11 for
coordinates G and S and image 10 for variable H. How-
ever, situations in which all the variances show a simi-
lar tendency do not always arise and it is possible to
find cases in which there are much greater differences
between the variances of one chromatic variable or
another, as can be observed in Figure 2, where even
the tendency of the curves is different for the six com-
ponents.

Thus, the most important chromatic variables when
applying the algorithm to obtain the focalized seg-
ments of each image can be considered to be those with
a greater variability in the variance or, equivalently,
the second variance in relation to the number of pixels
and the number of images, defined as

V 00ðRÞ ¼ ½r2ðr2ðRÞÞ� ¼
XK
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This is equivalent to calculating the variation of the
chromatic variables in the K images, taking into
account that the chromatic components showing a
greater variation are those that will contribute most
when applying the algorithm to obtain the segments of
each image with the best focalization.

Algorithm for Obtaining the Sectors With the
Best Focalization in Each Image

Starting with a set of K images, the algorithm that
has been developed can be summarized in the following
steps:

1. Each of the K images is broken down into its RGB
and LHS chromatic components and for each of
these the variance associated with the set of pixels
of each image is calculated.

2. For each chromatic component, the variance associ-
ated with the set of data of the K images supplied in
step 1 is calculated, defining the three chromatic com-
ponents with the greatest statistical weight as those
showing the highest variance value.

3. The numerical matrix Uk,i,j is generated, where each
component is calculated according to the formula

Uk;i;j ¼ uRkij þ vGkij þwBkij þ xLkij þ yHkij þ zSkij; ð4Þ

Fig. 1. Representation of variance of the RGB-LHS coordinates for
a set of 19 images in which it is possible to see that the image with the
best focalization is not the same for all the variables, but the tendency
is very similar for any one of the chromatic coordinates. The best
focalized image is number 12 for variables R, B, and L, while it is
image 11 for coordinates G and S and image 10 for variable H. [Color
figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]

Fig. 2. Representation of variance of the RGB-LHS coordinates for
a set of 12 images in which it is possible to see that the image with the
best focalization is not the same for all the variables and that very dif-
ferent tendencies for some of the chromatic variables are observed.
Thus, studying the variance of the different coordinates, it is not easy
to determine which image has the best focalization overall. [Color
figure can be viewed in the online issue, which is available at www.
interscience.wiley.com.]
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where the coefficients u. . .z have values of 1 or 0,
with 1 corresponding to the active chromatic compo-
nents chosen in step 2, and 0 to the rest of the compo-
nents.

4. The level of focalization associated with each point
of the matrix Uk,i,j is evaluated by measuring its
variance in relation to the set of points defined for
the k plane and formed by the existing points in s
layers around the point being considered. This is
done by extracting successive submatrixes centered
on each Uk,i,j, element with the dimensions 2s11,
(s 5 1,2,3, . . .) from the U matrix. The variance of
each submatrix is calculated by applying Eq. (2),
but substituting the average value with the value
of the point being considered. As a way of empha-
sizing the differences between the layer of data
nearest to each point and the rest of the layers, a
weighting factor proportional to the inverse of the
point’s positional distance has been applied. Thus,
a new matrix Wk,i,j is obtained in which in each
positional coordinate (k,i,j) the quadratic distances
of each point (i,j) of each k layer appear in relation
to the points of their surroundings. In this process
the s layers of the outer pixels of each image must
be sacrificed.

5. The vector Wk is extracted for each value of (i,j) and
the position k(max) of the maximum value is estab-
lished. The values of the chromaticity coordinates
associated with the position Vk(max),i,j are taken as
corresponding with the pixel with the best focaliza-
tion for that spatial position among the K images an-
alyzed.

6. If it is not possible to obtain a definite value or the
doubt is greater than the threshold value, the basis
for providing pixels will be to use those correspond-
ing to the (i,j) coordinates of the images with the
best overall focalization.

RESULTS

To assess the proposed working methodology and
show the differences between applying the algorithm
for different chromatic coordinates, two examples will
be given. First, a set of five design images are studied.
They are formed from one original image, parts of

which were made to be out of focus. Second, a set of
real images obtained with an optical microscope were
used.

Design Images

An image was designed with the word HELLO with
the following characteristics: (a) sharpness of the out-
lines, (b) high contrast between the edges of the letters,
and (c) random chromatic noise in the space between
the characters. The original image was submitted to a
partial artificial defocalization using image processing
software, creating a set of images that were partially
out of focus in specific zones (Fig. 3). The focalization
algorithm was applied to this set of images, analyzing
the dependencies of the result obtained according to
the chromatic components analyzed. Because they are
synthetic images they all have similar chromatic para-
metres. Furthermore, the algorithm developed does
not introduce false colors into the extended depth of
field images it generates.

Fig. 3. Set of five design images
in which only one of the letters is
focalized in each one. These images
were obtained from one initial
image, parts of which were defocal-
ized. [Color figure can be viewed in
the online issue, which is available
at www.interscience. wiley.com.]

Fig. 4. Representation of the variance of the RGB-LHS coordi-
nates for the set of images shown in Figure 3. The second variance of
the six chromatic variables is calculated from these values, which are
shown in Table 1. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com.]
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As was detailed in the description of the procedure,
the first step consists of calculating the variance for
each of the chromatic components and for the five
images. In Figure 4, we can observe the graphic repre-
sentations of variance according to the number of the
image for the chromatic variables RGB-LHS. Next, the
second variance for the six variables was calculated,
with the values obtained reflected in Table 1. From
these values it is possible to conclude that the chro-
matic components that carry most weight when apply-
ing the algorithm are RGL, and the least are BHS.

Figure 5A shows the reconstructed image obtained
by applying the algorithm to the RGL variables, while
Figure 5B shows another obtained by applying the
algorithm only to the L variable, which, as explained
above, is the variable that is normally used by the algo-
rithms found in the literature. Small differences can be
observed between both images. In the image obtained
with the RGL variables, the letter ‘‘e’’ (marked as 1)
has a higher resolution around its whole outline than
in the image obtained only with the L variable. Also, a
higher resolution can be distinguished on the edges of
all the letters, the most obvious case being in the letter
‘‘H’’ (marked as 2). That is, better focalization is
achieved overall in the image obtained by applying the
algorithm to the RGL variables. This is due to the fact
that when the algorithm is applied exclusively to the L
variable, the contribution of the RG variables is not
considered. Looking at the data in Table 1, these varia-
bles show high second variance values and therefore
carry more weight in the application of the algorithm.
The difference that is observed would be even greater
if the L variable carried less weight and so, in real
cases, using only the Lightness variable (as the algo-
rithms in the literature do) can lead to the best results
not being achieved.

Figure 5C shows the image obtained when the algo-
rithm is applied to the BHS variables, which carry the
least weight in the calculation performed by the algo-
rithm. If this image is compared with Figure 5A, the
letters of the image appear with less definition around
their outline. That is, the overall focalization of the
image is worse.

In Figure 5D, the result of applying the algorithm on
the six chromatic variables is shown. In this case, the
resolution is better than when only the BHS variables
(worse option) are used, but there is a loss of resolution
in the letter ‘‘H’’ (marked as 2) when this is compared
with the image obtained by applying the algorithm on
the RGL variables (Fig. 5A).

A more objective comparison than simple visual
appreciation is the calculation of variance of the set of
pixels in the resulting image, with an image having
better focalization if it maximizes the variance function
(Valdecasas et al., 2001). Furthermore, the variance for

each of the six chromatic variables is calculated since it
has been shown that different results may be reached
depending on the variables used. Variance was calcu-
lated for the images reconstructed when the algorithm
is applied to the variables with the greatest statistical
weight (RGL), the least weight (BHS), the L variable
and all the chromatic variables, as well as the original
image. Table 2 shows the data for the normalized dif-
ference image variance, which are weighted in relation
to the normalized second order variance. The image
with best focalization is the one where the sum of these
values is lowest. This table shows that using the RGL
coordinates as the basis for the calculation for the
reconstruction of the image provides better results
than the use of all the coordinates (RGBLSH) or only
the L coordinate. It can also be seen that when we use
the BHS variables (least weight) the image obtained
shows better results for these variables but worse
results for the other variables which have a greater
statistical weight. This can be seen in the values shown
in the last column of Table 2, corresponding to the sum
of the data for all the coordinates. In this column we
can appreciate that the best results are obtained using
the three statistically most representative variables.

Real Images

For the procedure to be carried out, 19 images were
obtained which, together, show complete focalization of
the entire observed field. Figure 6 shows some of the
images captured, and it can be observed that there are
focalized and unfocalized zones in each one. As we
have previously indicated, all the images have been
obtained under the same photographic conditions and
the algorithm does not introduce false colors into the
extended depth of field images. Therefore, the differen-
ces between each extended depth of field image
obtained as a result of the application of mathematical
algorithm are a direct consequence of the differences
between the chromatic coordinate sets. The variance
values obtained for the six chromatic variables are
shown in Figure 1, while the values obtained for the
second variance in relation to the number of pixels and
the number of images is shown in Table 3. From these
values, it can be deduced that the chromatic variables
which carry the greatest weight when applying the
algorithm will be RGS, although the B and L variables
can make an important contribution. The value of the
second variance obtained for the H variable is very low,
so it contributes very little in our algorithm. Figure 7A
shows the image, with extended depth of field, obtained
by applying the algorithm only to the RGS variables,
while Figure 7B shows the image obtained when the

TABLE 1. Variance values for each of the six chromatic components

Chromatic
coordinates

Second
variance

Normalized
second variance

R 12163 0.34
G 12148 0.34
B 2432 0.07
L 6053 0.17
H 1359 0.04
S 1442 0.04

TABLE 2. Variance normalized difference values weighted with
normalized second variance for each of the six chromatic components
of the images obtained as a result of applying the algorithm to the five

synthesized images

Variance

Image R G B L H S SUM

Starting image 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Result using RGL 17.4 10.8 3.5 0.4 2.2 0.1 34.4
Result using L 20.4 12.7 3.9 1.1 2.9 0.2 41.1
Result using BHS 27.0 20.4 3.4 6.2 2.2 0.1 59.3
Result using RGBHSL 19.2 11.8 3.9 0.8 2.7 0.2 38.5
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algorithm is applied exclusively to the L variable,
which is what the algorithms found in the literature
do. Comparing both images, some differences can be
observed in their resolution. It is possible to see that
the shady areas of each image (marked as 1) show bet-
ter focalization when the algorithm is applied to the
RGS variables than with other variables.

On the other hand, Figure 8 shows the opposite case.
This image shows the result of applying the algorithm

Fig. 5. Images obtained by applying the
algorithm to the set of images shown in Fig-
ure 3. (A) using the RGL variables, which
have the highest second variance values, as
the basis for the calculation, (B) using only
the L variable, (C) using the BHS variables,
which have the lowest second variance val-
ues, as the basis for the calculation, and (D)
using the six chromatic variables RGB-LHS.
[Color figure can be viewed in the online
issue, which is available at www.interscience.
wiley.com.]

Fig. 6. Representative composition with
some of the 19 images taken of a real sample
(1 euro coin), using an optical microscope. All
the images were captured using the same pho-
tographic conditions; resolution (640 3 480),
focal distance (14 mm), aperture (f/3.3) and ex-
position (1/125s). [Color figure can be viewed
in the online issue, which is available at
www.interscience.wiley.com.]

TABLE 3. Variance values for each of the six chromatic components

Chromatic
coordinates

Second
variance

Normalized
second variance

R 683009 0.22
G 704088 0.23
B 416517 0.14
L 521701 0.17
H 15255 <0.01
S 715026 0.23
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using the chromatic component H as the only calcula-
tion variable. This component, as was pointed out
above, has an appreciably lower second variance value
than the rest of the chromatic coordinates. If this
image is compared with Figures 7A and 7B, they are
seen to be very different. The image in Figure 8 has
several zones that are not well defined, whereas in the
other images these zones have better definition.

Table 4 shows values for the normalized difference
variance, weighted with regard to the normalized sec-
ond order variance, for the three images obtained by
applying the algorithm based on the analysis of the
RGS, L, and H variables. It can be observed that
the variance value for the image obtained by applying
the algorithm to the chromatic variables RGS shows
better focalization than the image obtained by applying
it to the L variable and appreciably better focalization
than when only the H coordinate is used.

DISCUSSION

In this study, an algorithm to obtain images with
extended focal depth of field from a set of images with
only partial focalization was used. The methodology
used makes it possible to show that the final resolution

that can be obtained depends on the chromatic parame-
ters used in the calculation, and their dependence on
the intrinsic characteristics of the image, which are
defined by the values of the chromatic coordinates R,
G, B, L, S, and H. The use of the second variance of the
chromatic coordinates in relation to the number of
images and pixels makes it possible to visualize the de-
pendence of the chromatic parameters with regard to
the extended focalization methodology. Interdependen-
cies are obtained that are an improvement on the
approaches based on the exclusive use of the Lightness
variable (L) as the basis for calculations.

The methodology is based on the calculation of the
second variance of each of the six chromatic variables
in all of the images acquired and the total number of
pixels in these images. With this value it is possible to
establish which chromatic variables carry the most
weight when establishing which pixels are considered
to be either in focus or having a value that does not
depend on the displacement of the focal axis. It has
been shown that the quality of the final image with
extended depth of field varies depending on the varia-
bles used for the calculation and, therefore, the algo-
rithms that are often used may produce flawed results
because they do not use the most suitable variables.
So, since a color space is three-dimensional, a suitable
approach for deciding which chromatic coordinates to
use when applying the algorithm to obtain the focal-
ized zones of each image is to use the three chromatic
variables with the highest second variance value.

The results obtained, for both the real images and
the design images used as a control, endorse the pro-
posed methodology. It is always possible to see more
detail in the reconstruction when using suitable chro-
matic variables, which are defined as those carrying
the greatest weight in the second variance. The use of

Fig. 7. Extended depth of field
image obtained by applying the
algorithm to the 19 real images of
a coin obtained with a high magni-
fication microscope. (A) using the
RGL variables, which have the
highest second variance values, as
the basis for the calculation, and
(B) using the L variable. [Color fig-
ure can be viewed in the online
issue, which is available at www.
interscience.wiley.com.]

Fig. 8. Extended depth of field image obtained by applying the
algorithm to the 19 real images of a coin obtained with a high magnifi-
cation microscope using the H variable, which has the lowest second
variance value, as the basis for the calculation. [Color figure can be
viewed in the online issue, which is available at www.interscience.
wiley.com.]

TABLE 4. Variance normalized difference values weighted with
normalized-second variance for each of the six chromatic components
of the images obtained as a result of applying the algorithm to 19

images taken of the sample under study using the different variables
as the basis the calculation in each case

Variance

Image R G B L H S SUM

Result using RGS 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Result using L 4.9 5.1 2.6 3.7 0.0 7.1 23.4
Result using H 7.8 46.2 2.7 5.1 0.2 10.9 72.9
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variables carrying less weight in the calculation of sec-
ond variance as the basis for calculations can lead to
results in which reconstructed images with extended
depth of field show chromatic, and even geometric, dis-
tortions.

To confirm the quality of our system and algorithm
we have compared the aforementioned examples with
a methodology and algorithm developed by Forster
et al. (2004) based on a complex-valued wavelet trans-
form, which, like our algorithm, does not introduce
false colors into the images obtained. To compare the
images obtained with both methods, the variance of
each image was calculated as, according to the litera-
ture, a higher value of variance implies better focaliza-
tion (Valdecasas et al., 2001). With design images the
improvement achieved was �10%, while with the real
images our results showed an improvement of 5%,
according to the variance data calculated. This is due
to the fact that it is not only the function used as the
base of the algorithm that is important, but also the
way that the function is applied to the images under
study. The design images example is an extreme case,
but it makes it possible to detect clearly the improve-
ments that our algorithm provides.
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Poce-Fatou JA, Martı́n J, Alcántara R, Fernández-Lorenzo C. 2002. A
precision method for laser focusing on laser beam induced current
experiments. Rev Sci Instrum 73:3895–3900.

Scalfi-Happ C, Jauss A, Ibach W, Hollricher O, Fulda S, Hauser C,
Steiner R, Rück A. 2007. Confocal raman microscopy as a diagnostic
tool for investigation of living neuroblastoma tumour cells. Med
Laser Appl 22:157–164.

Scrimgeour J, Eriksson E, Goksor M. 2007. Laser surgery and optical
trapping in a laser scanning microscope. Meth Cell Biol 82:629–
646.

Snyder MA, Vlachos DG, Nikolakis V. 2007. Quantitative analysis of
membrane morphology, microstructure, and polycrystallinity via
laser scanning confocal microscopy: Application to NaX zeolite
membranes. J Membrane Sci 290:1–18.

Sugimoto SA, Ichioka Y. 1985. Digital composition of images with
increased depth of focus considering depth information. App Opt
24:2076–2080.

Valdecasas AG, Marshall D, Becerra JM, Terrero JJ. 2001. On the
extended depth of focus algorithms for bright field microscopy.
Micron 32:559–569.

Wickramasinghe SR, Carlson JO, Teske C, Hubbuch J, Ulbricht M.
2006. Characterizing solute binding to macroporous ion exchange
membrane adsorbers using confocal laser scanning microscopy.
J Membrane Sci 281:609–618.

Widjanarko T, Hardie RC. 2002. A post-processing technique for
extended depth of focus in conventional optical microscopy. Opt
Laser Technol 34:299–305.

Wyszecki G, Stiles WS. 1982. Color science: Concepts and methods,
quantitative data and formulae. New York: Wiley.

Zhang G, Flach CR, Mendelsohn R. 2007. Tracking the dephosphoryl-
ation of resveratrol triphosphate in skin by confocal Raman micros-
copy. Biomaterials 28:4635–4642.

Microscopy Research and Technique

410 J. NAVAS AND J. MARTÍN


