

Universidad de Cádiz

Proyectos de fin de carrera de Ingeniería Técnica Naval

<u>Proyecto de Embarcación de recreo tipo Open de 18m. L.</u> <u>Sumario.</u>

Proyecto de Embarcación de Recreo tipo "Open" de 18m. de Eslora.

Índice:

•	Sección 1. Especificación Técnica.	Pág. 3.
•	Sección 2. Estudio Estadístico.	Pág. 7.
•	Sección 3. Predimensionamiento.	Pág. 17.
•	Sección 4. Diseño de la Carena.	Pág. 29.
•	Sección 5. Diseño de Interiores y Exteriores.	Pág. 45.
•	Sección 6. Sistemas de Abordo.	Pág. 52.
•	Sección 7. Cálculo del Escantillonado.	Pág. 59.
•	Sección 8. Estudio de Pesos y C.D.G.	Pág. 94.
•	Sección 9. Resistencia en Planeo.	Pág. 102.
•	Sección 10. Motorización y Propulsión.	Pág. 110.
•	Sección 11. Estudio de Estabilidad.	Pág. 120.
•	Sección 11. Anexo 1.	Pág. 135.
•	Sección 11. Anexo 2.	Pág. 146.
•	Sección 12. Presupuesto Orientativo.	Pág. 160.
•	Sección 13. Conclusiones Finales.	Pág. 166.
•	Bibliografía.	Pág. 168.
•	Anexo de Planos en formato A3.	Pág.170.

<u>Proyecto de Embarcación de recreo tipo Open de 18m. L.</u> <u>Sumario.</u>

Sección 1. Especificación Técnica.

Proyecto de Embarcación de recreo tipo Open de 18m. L. 1. Especificación Técnica.

1. ESPECIFICACIÓN TÉCNICA.

El tipo de embarcación requerida por el armador para la realización de su proyecto es un yate de crucero con cubierta Open de altas prestaciones y con un carácter lúdico que le permita la práctica de diversas actividades náuticas.

El estilo Open se va abriendo hueco en el sector de la náutica en esloras medias-altas debido a varias razones entre las que destacamos que en su interior hay el suficiente hueco como para poseer una amplia habilitación dentro de unas carenas muy deportivas, las cuales les hacen tener unos ritmos de crucero mucho más elevados que los típicos cruceros de grandes superestructuras y hard-top. Esta velocidad unido a un centro de gravedad más bajo debido a una menor superestructura hacen que estas embarcaciones tengan una mayor maniobrabilidad comparada siempre con un crucero clásico.

Los requerimientos básicos del proyecto exigidos por el armador son:

 El número máximo de personas para el que se homologará será un mínimo de 14, siendo de 6 el nº

1. Especificación Técnica.

de personas que podrán pernoctar en los camarotes habilitados para tal efecto.

- La velocidad máxima del yate será en torno a los 45 nudos y siendo sobre 38-40 nudos la velocidad de crucero requerida.
- El yate se destinará a la práctica de los deportes náuticos, ocio a bordo y a la navegación a gran velocidad.
- La autonomía media a de ser de 300 millas náuticas a una velocidad normal de crucero.
- La categoría de navegación será B.
- La habilitación ha de contar con al menos 3 camarotes, cocina, salón y 3 aseos. El dormitorio principal o suite del armador a de situarse a popa de la habilitación, aprovechando así toda la manga del yate.
- Contar con cuartos de baño completos con duchas independientes.
- No es indispensable contar con una zona de habilitación específica para la tripulación.
- Para el uso recreacional al que va destinada la embarcación necesita un garaje para alojar una moto de agua y una lancha auxiliar semirrigida de 3,5 mts.
- Todos los camarotes y las zonas comunes interiores tienen que estar climatizadas independientemente.

<u>Sección 2.</u> <u>Estudio Estadístico.</u>

2. ESTUDIO ESTADÍSTICO.

Analizando los datos que suministran las marcas se puede comprobar a primera vista que no son del todo fiables, ya que dependiendo del modelo hay datos que pueden llevar a algún equivoco o simplemente pueden falsear los coeficientes que se intenten utilizar con los datos obtenidos por el fabricante.

Algo tan simple como incluir los ejes de cola y las hélices dentro del calado hace que el desplazamiento, coeficientes de bloque, de esbeltez, prismático, centro de carena, etc.... varíen lo suficiente como para que el estudio estadístico que se realice no tenga ningún valor ya que no todos incluyen las hélices en el calado, ni todos los modelos usan la misma transmisión final.

Otros datos que inducen al equívoco son el desplazamiento y la eslora, el primero porque muchas veces solo se incluye como desplazamiento, no especificándose como rosca, máximo, ni medio, o incluyendo únicamente uno de ellos, obligando con ello a estimar las otras condiciones de carga, tampoco se especifica con que motorización es ese desplazamiento, ya que dentro de un mismo modelo puede haber diferencias de más de 400 HP. Por motor, y eso hace que el dimensionamiento de los bloques motor, trasmisiones, líneas de ejes, hélices u otro tipo de transmisión final usada, tanto

como los polines, apoyos y refuerzos de la estructura han de ser diferentes.

Dentro del desplazamiento también puede haber diferencias importantes de peso según las diferentes opciones de habilitación que ofrezca el fabricante, esto se agudiza sobre todo en los modelos más grandes, ya que disponen de mayor espacio interior y exterior. Pudiendo incluir dentro de las diferentes configuraciones interiores camarotes para la tripulación, amplios camarotes para el propietario usando toda la manga de la zona central del barco, diferentes camarotes dobles, varios cuartos de baño, así como las diferencias en el acabado interior, como suelos, guarnecidos de paredes, techos, hangares en popa para varios vehículos acuáticos, etc....

La eslora es el tercer punto que hay que tomar con cuidado, puesto que según el fabricante puede aparecer la eslora del casco, la eslora máxima o alguna intermedia incluyendo el púlpito de proa o la plataforma de baño. Únicamente algunos modelos indican que sus medidas cumplen con la normativa ISO, siendo en este caso la norma ISO 8666 la especifica en este apartado concreto.

Parámetros.

Eslora Máxima (Loa).

Rango [16,7 - 21,2]

Las embarcaciones analizadas entran dentro de un rango muy amplio de esloras máximas, ya que el rango de estas varía desde un mínimo de 16,7 m. hasta un máximo de 21,2 m. habiendo entre ellos

4,5 m. cabiendo muchas embarcaciones entre dichos extremos. Claro está que entre las más pequeñas y las mayores estos metros de más se notan en la amplitud de sus interiores, mayor numero de camarotes, habilitación especifica para los tripulantes, hangares, una estructura sobre cubierta más estilizada y desarrollada, etc. Contrariamente a lo que pueda parecer el desplazamiento se dispara solo en algunos modelos no siendo en este caso la más pesada la de mayor eslora.

Eslora del Casco (Lh).

Rango [17,35 - 20,65]

La eslora del casco es una de las medidas que menos veces dan los fabricantes, y en todos los casos la medición incluye la plataforma de popa, siendo estas en la mayoría de los casos bastante amplias por motivos estéticos y a que dado que son embarcaciones dedicadas a un uso exclusivo de ocio y deportes náuticos y son capaces de desplazar como mínimo 12 personas, pueden acoger sin estrecheces a varias personas. Al incluir la plataforma, todas las relaciones que usen la eslora del casco se verán afectadas, ya que esta se vera aumentada, habiendo una gran diferencia entre esta y por ejemplo la eslora de flotación, que es fija.

Eslora de la Línea de Flotación (Lwl).

Rango [13,72 - 17,31]

De las 26 embarcaciones estudiadas únicamente 7 son de las que se dispone este dato, en este caso el rango inicial del que se disponía en la eslora total, aquí se reduce a menos de 2 m. Es un dato muy importante, ya que condiciona el semiangulo de entrada en

el agua, normalmente esloras de flotación más pequeñas en relación con la total, significan un semiangulo de entrada menor y una embarcación más rápida.

Manga Máxima (B).

Rango [4,27 - 5,45]

La manga es uno de los parámetros más fiables que se pueden sacar de la comparativa, ya que normalmente no hay ningún apéndice que sobresalga por las bandas de las embarcaciones, a excepción de alguna franja de goma usada para evitar golpes en los pantalanes. Es un valor que nos da una idea de la habitabilidad del yate, tiene también mucha influencia en el desplazamiento, la resistencia al avance y en el confort de marcha. Aquí el rango de valores se mueve entre los exiguos 4,27 m. de la Princess V55 y los amplísimos 5,45 m. de la Riva 68 Ego. Tanto una como otra son unos extremos muy separados de la media, ya que la segunda embarcación con menos manga es 21 cm. Más ancha, igual pasa por la otra punta de la grafica, la segunda embarcación mas manguda es 38 cm. Más estrecha, con una eslora del casco muy similar, eso si, su desplazamiento es 10 TN. Inferior.

Calado Máximo (T).

Rango [0,82 - 1,85]

En este apartado prácticamente no se pueden sacar un rango exacto ya que en todos los casos se incluyen dentro del calado los apéndices tales como timones, líneas de eje y hélices. Solo los fabricantes que usan trasmisiones alternativas como hélices de superficie o waterjet tienen unos calados más reales, aunque en estos casos también las hélices de superficie pueden calar un poco más que

el casco, pero al ser poca la diferencia pueden ser incluidas. El rango de datos se reduce a solo siete embarcaciones cuyos calados comprenden entre 0,82 cm. Y 1,25 m. Al usar sistemas de trasmisión que han de ser instalados relativamente cerca de la flotación o incluso por encima de esta condicionan el calado, reduciéndolo, y forzando a dar volumen de carena aumentando la manga.

Desplazamiento en Rosca (Δr) y Máximo (Δm).

Rango Ar [17500 - 36300]

Rango Am [22000 - 42300]

El desplazamiento de estas embarcaciones es un dato con mucha dispersión en su rango, dependiendo tanto de las dimensiones exteriores del yate, del acabado interior y exterior, de su tipo de construcción, de los materiales de fabricación, de la velocidad máxima, su categoría de navegación, etc. Esto nos lleva a que una embarcación relativamente grande como la Patagonia 63 tenga un desplazamiento en rosca de solo 15 Tn. En parte porque su acabado es inferior que el de sus similares, tiene menos manga, es relativamente lenta (33 Kn.), con motorizaciones no muy grandes, hasta la pesadísima Riva 68 Ego que con sus 36,3 Tn. Es más de 2 veces más pesada que la más ligera. Es la más grande en todas sus dimensiones, sobre todo en manga y calado, con 1,85 m. incluyendo apéndices, y con un fondo relativamente plano con solo 12º de astilla muerta. Esto da como resultado un coeficiente de bloque muy alto y unido a unos acabados ostentosos, grandes motorizaciones, multitud de extras, y la capacidad de desplazar a mas personas hacen que el peso se dispare, aun así no es de las más lentas.

En el desplazamiento máximo ocurre lo mismo, habiendo las mismas diferencias, incrementadas en una media de 5 Tn. Siendo

esta algo menor en las mas pequeñas, o en las que tienen unas capacidades de combustible y agua menores, no tienen hangar para auxiliar, o no están capacitadas para llevar muchas personas.

Capacidad de Líquidos.

Rango Combustible [2000 - 4000]

Rango A. Dulce [550 - 1300]

Dependen de las dimensiones del barco, las motorizaciones, la habilitación que tenga, la distancia máxima que puede recorrer, el número de personas que desplace, de las normativas, etc. Siendo estas de entre 2500 y 4000 litros de combustible y entre 550 y 1300 litros de agua dulce respectivamente estableciéndose las media en unos 3000 y 750 litros respectivamente, siendo ya estas unas capacidades realmente aceptables.

Motorizaciones.

Rango [2 * 615 - 2 * 1550]

Dentro de las motorizaciones hay una gran variedad de potencias, siendo siempre dos motores que varían entre 615 hasta 1550 CV. unitarios, normalmente cada fabricante ofrece cada modelo con varias motorizaciones, incluso de varias marcas, aunque normalmente se monta un bloque motor que de varias potencias, así pueden usar los mismos polines, usar el mismo reparto de pesos, etc. El fabricante más usado en este rango de embarcaciones es el fabricante Man, siendo también usados los MTU y Caterpillar.

Velocidad Máxima.

Rango [30 - 53]

Todos los yates de este estilo "Open" suelen ser bastante rápidas, en este caso hay varios que sobrepasan los 50 Kn., sobrepasando la mayoría los 40 Kn. Y en ningún caso bajan de 30 Kn. Una de las peculiaridades que se encuentran es que todas las que rondan los 50 Kn. Usan trasmisiones alternativas a los clásicos ejes, siendo la hélice de superficie la más usada, usando waterjets solo las marcas AB y Alfamarine.

* En la siguiente página se puede ver la tabla de datos de las diferentes embarcaciones estudiadas.

2. Estudio Estadístico.

	LOA	S	[M	Manga Calado	Calado	Calado sin apendices	Desp. Rosca	Desp. Max	Capac. Fuel	Capac. Agua	Mot. Min	Mot. Max	Max	Astilla Muerta	Potencia Total F	No Personas
Gobbi Atlantis 55	16,7			4,65	1,2		18400	22000	4000	1300	2*710	2 *710	36		1420	
Princess V55	17			4,27	1,09		18100	22000	2000	405	2 * 615	2 *1050	42		2100	
Neptunus 56 Express	17,2			4,78	1,37		20000	24500	2600	500	2 * 660	2 *660	8		1320	
Uniesse Open 57	17,5			2	1,45		23500	23500 28500	3400	1000	2 * 800	2 *800	40		1600	
Sunseeker Predator 56	17,6			4,59	1,05		21100	26100	2350	650	2 * 670	2 *800	40		1600	
Windy 58 Zephyros	17,7	17,4	14	4,6	6′0		19000	19000 23000	2100	400	2 * 900	900 2 *1100	41		2200	
AB 58′	17,7			4,55	6′0	6'0	18000	23000	3200	900	2 * 1300	13002*1300	22		2600	
Pershing 56	18	17,6	13,7	8,4	1,25	1,25	28600	33900	3200	740	2 * 1200	12002*1360	46	14	2720	
Princess V58	18,2	17,9		4,62	1,13		20000	20000 24000	2600	500	2 * 775	2 *1100	39		2200	
Dalla Pieta DP 58	18,5	17,8		2	1,48		25000	30300	2585	800	2 * 900	2*1100	37		2200	
Cantieri di Sarnico 60	18,6	18,2		8,4	1,4		23500	23500 28000	2500	650	2 * 900 2 *1100	2 *1100	38		2200	12
Fairline Targa 62	18,9	18,6		4,75	1,37		23200	28000	2950	220	2 * 1015	10152*1100	36		2200	
Itama 55	18,9	17,1		4,78	1,55		22500	28325	3250	700	2 * 1000	10002*1100	41		2300	14
Baia Azzurra	18,9			5,03	0,82	0,82	22000	22000 26500	3000	650	2 * 1360	13602 *1523	45		2300	
Alfamarine 60	19			4,6	1,4		24000	29500	3500	800	2 * 1150	11502*1500	20		3000	
Baia Exuma	19			4,89	98'0	0,854	19976	19976 25000	3000	730	042 * 2	770 2*1523	25		3.046	
Patagonia 63	19			4,48	1,3		22000	26000	3280	1175			33			
Azimut 62 S	19,1	18,4		4,9	1,5		24500	29500	2700	900	2 * 1015	2 *1015	35	19,2	2030	
Pershing 62	19,4	18,9	14,4	2	1,25	1,25	29800	29800 35700	3500	900	2*1550	1550 2 *1550	46	17	3100	16
Cantieri di Sarnico 65	19,61	19,1		4,86	1,45		26000	31000	2760	660	2 * 1100	11002*1360	39		2720	14
Riva 63 Vértigo	19,61	19	15,6	4,8	1,6		27400	27 400 32 400	3200	660	2 * 1360	13602 *1360	40	12	2720	16
Sunseeker Predator 62	19,61	19,1	14,7	5	1,54		26500	31500	3000	700	2 * 1100	1100 2*1100	39		2200	
Sinergia 67	20,2	20	15	5	1	1	24500	29500	3850	850	2 * 1300	13002 *1500	48		3000	12
AB 68′	20,7			4,95	1,1	1,1	24000	24000 29500	4000	1000	2 * 1520	15202 *1550	20		3100	
Riva 68 Ego	50,9	20,6	17,3	5,45	1,85		36300	42300	3600	750	2 * 1550	15502 * 1550	38	12	2600	16
Azimut 68 S	21,2	20,7		2,07	1,6		26500	26500 32900	3200	950	2 * 1360	13602*1360	37	15,4	2720	
Media de Resultados	18,8	18,7	15	4,816	1,285	1,025	23630	23630 28574	3051	762			41	15	2368	14

<u>Sección 3.</u> <u>Predimensionamiento.</u>

3. Predimensionamiento

3. PREDIMENSIONAMIENTO.

Criterios Teóricos.

Como punto de partida se puede tomar una **Eslora del casco** base de 18 metros, a partir de la cual hay que basarse para obtener los diferentes parámetros del casco.

La **Eslora Máxima** es un valor muy inexacto de calcular, ya que depende de los "añadidos" que se le incluyan al casco, como son el púlpito de proa o la forma del pasamanos en la zona más cercana a dicho púlpito.

La **Eslora de Flotación** junto con el semiangulo de entrada al agua de la perpendicular de proa son datos que nos indican si la embarcación ha sido diseñada en busca de una alta velocidad de crucero o si bien sacrifica varios nudos de esta velocidad en busca de tener mayor volumen interior y mejorar la navegación con mala mar. Esta variara entre unos valores que aun no siendo fijos se pueden suponer que está aproximadamente entre un 75% y un 85% de la eslora del casco, dependiendo también del ángulo de entrada en la perpendicular de proa.

La **Manga máxima** puede variar entre aproximadamente 4,8 – 5 metros para las embarcaciones que necesiten una gran habitabilidad, restando velocidad punta, hasta unos 4,30 metros, para las más

3. Predimensionamiento

rápidas, estilizadas, y menos habitables en su interior. Es decir, su relación **Loa / Bmax** variará entre un mínimo de 3,6 y un máximo de 4,2.

El **Desplazamiento en Rosca** lo podemos sacar de un modo no muy preciso, pero que sirve de guía orientativa para el Coeficiente de Esbeltez, cuya relación L_{wl} / $V^{1/3}$ tiene que rondar un valor cercano a 5, cuanto más cercano esté a 4,5 las embarcaciones serán más pesadas, y sobrepasando 5 serán muy livianas. La eslora en la flotación es un dato obtenido solo de algunas embarcaciones.

El Desplazamiento Máximo dependerá de entre otros valores, de las capacidades de combustible y de agua dulce que puedan alojar los respectivos depósitos, del nº de personas que puedan viajar, del equipamiento recreativo que lleve, etc. Se puede partir de la base de unas 5 TN de sobrepeso respecto al desplazamiento en rosca.

El **Calado**, en este caso es algo especial, ya que el sistema de propulsión será alternativo a las típicas hélices movidas por un eje. En este caso serán waterjets o hélices de superficie las que impulsarán al casco. Por este motivo hay que tener en cuenta que estos han de trabajar en un plano muy cercano a la flotación en cualquiera de los estados de carga que se encuentre la embarcación. Por este motivo, el calado no será muy grande, no sobrepasando en demasía más de un metro en ninguna situación de carga.

El **Ángulo de Astilla Muerta** es un parámetro de gran importancia en embarcaciones de planeo, ya que este influye en el trimado dinámico, en su estabilidad tanto longitudinal como transversal, en la estabilidad de rumbo, en la superficie mojada del casco, en el empuje

3. Predimensionamiento

hidrodinámico, en la resistencia hidrodinámica y de fricción, cálculo de potencia, etc.

Este ángulo variará aumentando su valor desde la perpendicular de popa hasta la proa, tomándose los valores de la perpendicular de popa, que será el mínimo y el de la cuaderna maestra para los cálculos de superficie mojada, resistencia, posiciones de presión dinámica y centro de gravedad, usándose los valores de astilla muerta de proa para determinar el comportamiento cuando se encuentra en condiciones de oleaje o mala mar.

En la perpendicular de popa, el ángulo variará entre un mínimo de 12º y un máximo de 20º, dependiendo de las prestaciones y el comportamiento que se quieran obtener de dicha carena. Este ángulo variará, creciendo progresivamente según avanza a proa, siendo en la maestra entre unos 19º y 24º.

La **Velocidad Máxima** y la **Potencia Máxima**, son directamente proporcionales, a más velocidad, mayor potencia que hay que instalar para alcanzarla, pudiéndose hacer una primera estimación de entre 2000 CV. y 2500 CV. para alcanzar una velocidad estimada superior a 40 Kn.

3. Predimensionamiento

Estudio Estadístico.

Del estudio estadístico realizado sobre la tabla del final del capítulo 2, se obtienen los siguientes parámetros medios, que pueden servir solo como guía, ya que las embarcaciones incluidas tienen unas configuraciones muy variadas.

Parámetros	Media de Resultados
L _{oa}	18,78 mts.
L _h	18,69 mts.
L _{wl}	14,96 mts.
B _{Max}	4,816 mts.
T _{Max}	1,285 mts.
Calado s/apéndices	1,025 mts.
Δ_{R}	23,63 TN.
Δ_{Max}	28,57 TN.
Capac. Fuel	3051 Lts.
Capac. Agua	762 Lts.
V. máx.	41 Kn.
Astilla Muerta	15°
Potencia Total	2368 CV.
Nº Personas	12

En la tabla se puede observar que entre la eslora total y la eslora del casco solo hay 9 cm. de diferencia, debido a que la eslora del casco solo la dan varios fabricantes, esta diferencia tendría que estar entre unos 30 cm. hasta un máximo de 1 mts, dependiendo de las dimensiones del púlpito de proa, aunque normalmente la diferencia de esloras no es superior a 60 cm.

3. Predimensionamiento

Los parámetros más fiables que podemos obtener del estudio son las capacidades de combustible y agua dulce, la potencia total instalada y la manga, ya que los demás parámetros no son del todo fiables, unos por no ofrecerlos todos los modelos como son la eslora de flotación, el calado sin apéndices o el ángulo de astilla muerta, u otros por no ofrecer una cifra exacta, como pueden ser ofrecer una velocidad máxima de +39 Kn. O un calado medio, y no el máximo, un desplazamiento medio, no en rosca o máximo, etc.

Reuniendo los Resultados de los Criterios Teóricos y los del Estudio Comparativo obtenemos la siguiente tabla comparativa donde además se incluye la diferencia entre ambos resultados.

Parámetros	Resultados Teóricos	Media del Estudio Estadístico	Diferencia
L _{oa}	-	18,78 mts.	18,78 mts.
L _h	18 mts.	18,69 mts.	+0,69 mts.
L _{wl}	14,40 mts.	14,96 mts.	+0,56 mts.
B _{Max}	4,65 mts.	4,816 mts.	+0,166 mts.
T _{Max}	1,00 mts.	1,285 mts.	+0,285 mts.
Calado s/apéndices	1,00 mts.	1,025 mts.	+0,025 mts.
Δ_{R}	28,00 TN.	23,53 TN.	-4,47 TN.
Δ_{Max}	32,00 TN.	28,57 TN.	-3,43 TN.
Capac. Fuel	-	3051 Lts.	3051 Lts.
Capac. Agua	-	762 Lts.	762 Lts.
V. máx.	+40 Kn.	41 Kn.	+1 Kn.
Astilla Muerta	18º	15°	-30
Potencia Total	+2000 CV.	2368 CV.	+368 CV.
Nº Personas	12	14	+2

3. Predimensionamiento

Analizando los diferentes resultados y resumiendo a grosso modo se puede decir que la media del estudio estadístico seria una embarcación algo mayor en sus parámetros principales, con un calado parecido, mucho más ligera de desplazamiento, con una velocidad más alta, un fondo más plano en popa debido a una astilla muerta menor y algo más potente.

3. Predimensionamiento

Criterios Propios.

Viendo la tabla de diferencias entre los resultados de la tabla anterior y los del estudio comparativo, y analizando todas las embarcaciones exhaustivamente se pueden sacar varias conclusiones.

Criterios Prácticos.

Eslora. Tal y como sucede en la tabla del estudio estadístico, la eslora total del casco, la aumentaría un porcentaje para aumentar por una parte su habilitación interior, y por otra para mejorar su estabilidad y comportamiento en el mar debido a las altas velocidades que llegará a alcanzar. De paso se reduce el nº de Freude efectivo. Como contrapartidas tiene sobre todo el aumento de la superficie mojada, lo que tendrá que ser contrarrestado por un aumento de la potencia que inicialmente se había previsto instalar, para la velocidad de diseño.

Manga. La manga máxima se ampliará hasta un máximo no superior a 5 metros, para que la relación Loa / Bmax se siga manteniendo en una proporción similar a la de partida. Una embarcación con una manga superior aumentaría en exceso la superficie mojada, por tanto la resistencia, no siendo rentable pasar de este valor, ya que la ganancia en espacio y estabilidad transversal no compensan con el exceso de potencia que habría que tener.

Calado Máximo. Dado que se empleará un sistema de transmisión de superficie, el calado máximo del casco será muy bajo, ya que bajo este no habrá instalado ningún eje de transmisión ni timones. Partiendo de este punto, de la amplia manga entre codillos y de un ángulo de astilla muerta que ofrezca un equilibrio optimo entre

3. Predimensionamiento

las fuerzas de sustentación, una aceptable maniobrabilidad y unas aceleraciones verticales no excesivas, se puede aceptar un calado máximo del casco de 0,95 mts.

Desplazamiento. En una embarcación de planeo y con unas considerables dimensiones este ha de contenerse al máximo e intentar que la distribución de pesos favorezca comportamiento del barco en el mar. El desplazamiento debería de rondar las 23 o 24 Tn. En rosca, que unidos a 3500 lts. de combustible, 800 litros de agua dulce, 14 personas con algo de equipaje suman en torno a 4800 kg., esto unido a algún sobrepeso adicional hace que el desplazamiento máximo suba otras 5 Tn. adicionales al desplazamiento en rosca inicial, quedando el máximo en torno a 28, 29 Tn. Esto no siempre se consigue mediante una construcción tradicional de fibra de poliéster laminado a mano, sino que hay que utilizar otros procesos más meticulosos empleando materiales exóticos como resinas epoxi y fibras de kevlar, y realizando un estudio exhaustivo de la habilitación y los equipos a instalar.

Velocidad. La velocidad máxima de diseño quedará establecida en 45 nudos de máxima, no estableciéndose una velocidad de crucero de antemano, ya que para eso hay que tener las curvas de resistencia de la embarcación y las curvas de potencia y consumo de los motores que se vayan a instalar para con ellas poder llegar a un punto cercano a su velocidad máxima, pero cuyo consumo no sea desorbitado.

Astilla muerta. De las pocas embarcaciones que dan el dato de la astilla muerta en popa, se puede decir que son carenas con un fondo muy plano, aptas para el planeo, ya que alcanzarían altas

3. Predimensionamiento

velocidades sin excesiva potencia, pero tendrían grandes problemas en mar abierto, debido a que tienen mayor sensibilidad a la perdida de gobierno, y sobre todo a las aceleraciones verticales por los impactos de las olas. Esto se solventa realizando una carena en V evolutiva, siendo esta más plana en popa y con unas secciones de proa más finas, cosa que no se puede comprobar en la comparativa ya que no se dispone de dichos datos.

Criterios Estéticos.

Las embarcaciones de mayor eslora son las que disponen de un equipamiento para las actividades náuticas mayor, como pueden ser embarcaciones semirrigidas auxiliares, motos de agua, canoas, etc. Este equipamiento es convenientemente albergado en un garaje en la popa de la embarcación justo encima de la cámara de máquinas. En caso de no tener este equipamiento, el emplazamiento justo encima de los motores se usa como camarote de la tripulación o en algún otro caso no muy frecuente como camarote para el pasaje.

En estas embarcaciones de mayores dimensiones nos encontramos con las cubiertas más despejadas, estilizadas y sobre todo los hard-tops más espaciosos y con una distribución más equilibrada, sin tener que sobrecargar los espacios.

Una de las tendencias estéticas más de moda es el instalar una plataforma de popa con unas dimensiones considerables pero totalmente integradas en el diseño del modelo. Para acentuar incluso las dimensiones de la plataforma, esta se alarga rebajando la altura del casco en esta zona de la popa.

3. Predimensionamiento

Conclusiones.

La eslora del casco se verá ampliada hasta los 18,50 mts a la cual le incluiremos la plataforma de popa, que hará que la eslora llegue hasta 19,20 mts. La eslora máxima se aproximará por tanto a los 20 mts. Pero en ningún caso los superará.

La manga quedará fijada en un máximo de 5 mts. en el cuerpo central de la embarcación. Dando una relación Loa / Bmax de 3,84.

El Desplazamiento en rosca será aproximadamente de unas 23/24 Tn. Aumentando hasta las 28/29 Tn. En el caso del desplazamiento máximo.

La velocidad de diseño ha quedado fijada en 45 nudos y la potencia se estima en aproximadamente 2500 CV.

3. Predimensionamiento

Parámetros	Estudio Estadístico	Criterios Propios
Eslora Max.	18,78 mts	19,50 mts
Eslora del Casco	18,69 mts.	18,50 mts
Manga Max.	4,816 mts	5 mts
Calado	1,285 mts	0,95 mts
Desplazamiento en rosca	23,63 TN.	24 Tn.
Desplazamiento máximo	28,57 TN.	29 Tn.
Astilla Muerta	150	170
Velocidad Max.	41 Kn.	45 Kn.
Potencia Max.	2368 CV.	2500 CV.

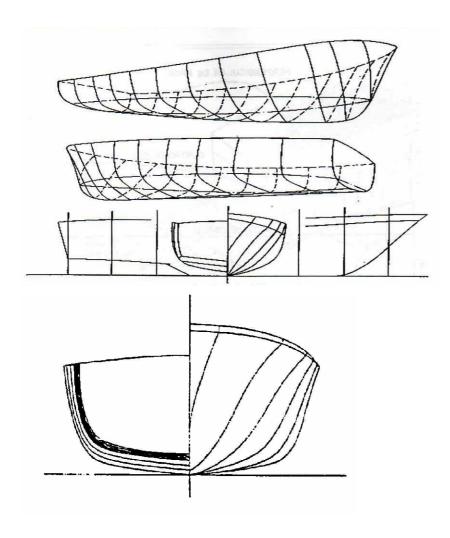
<u>Sección 4.</u> Diseño de la Carena.

4. Diseño de la Carena.

4. DISEÑO DE LA CARENA.

Las embarcaciones de planeo constituyen los vehículos marinos rápidos más simples y extendidos por el mundo. Al hacerse económicamente accesible la construcción en materiales ligeros como el aluminio o los materiales compuestos y el montaje de modernos y potentes motores diesel ligeros y turbinas de gas marinizadas ha permitido mejorar la falta de velocidad y capacidad de carga que tenían, mejorando también su comportamiento en el mar.

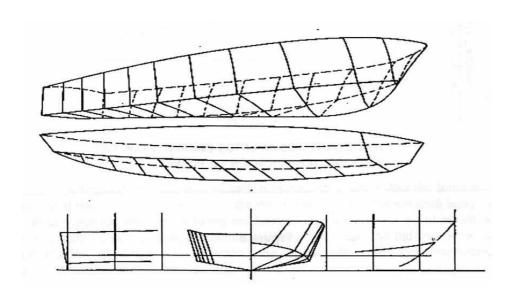
Estructuralmente el diseño del planeador viene gobernado por los efectos combinados de su avance a través del mar entre las olas y de las aceleraciones inducidas por sus movimientos de cabeceo y arfada. Dependiendo de su uso, rango de velocidades, zona de navegación, etc. Hay que diferenciar entre dos grandes grupos de planeadores, que son los de formas redondas y los de secciones rectas con uno o más codillos.

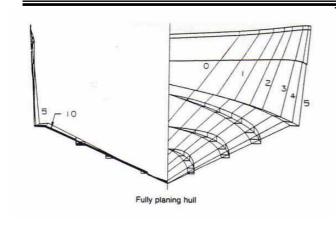

<u>Formas redondas</u>. Son aquellas que partiendo directamente de las antiguas embarcaciones de desplazamiento, han sido completamente revisadas para ofrecer un buen comportamiento a alta velocidad. Estos cambios son:

- Modificaciones en la popa. La popa pasa de ser redondeada de tipo crucero a ser cortada tipo espejo. Se le da mayor volumen e inmersión para generar mayor sustentación dinámica.
- Se le añaden junquillos anti-spray para anular la superficie mojada provocada por el spray, retirando del casco las olas altas en la zona de proa y evitando los rociones de agua en la

4. Diseño de la Carena.

- cubierta por efecto de las olas de proa. Ayudando también a ganar estabilidad transversal a alta velocidad.
- Los cuerpos de proa se han afinado con altas astillas muertas y convexas, proporcionando una buena entrada en el agua.


Las formas redondas son normalmente usadas para embarcaciones de semidesplazamiento y para embarcaciones de planeo con un nº de Froude inferior a 1,3 ya que es el rango de velocidad donde mejor eficiencia consiguen. Este tipo de carenase instala en las evoluciones de las típicas embarcaciones del Mar Mediterráneo, como los Llauds Baleares o Gozzos Italianos. También se utilizan en embarcaciones de corte clásico como algunas nuevas construcciones imitando los antiguos Trawlers, o en pequeños botes.


4. Diseño de la Carena.

Formas Rectas o con Codillo Duro. Son el resultado de la evolución a partir de estudios realizados con placas planas, que es la forma más básica para estudiar el planeo. Se caracterizan por una carena con una astilla muerta evolutiva, es decir, el ángulo que forma el fondo con la línea de flotación transversal se va aumentando según se avance hacia proa, por tener unos codillos rectos que evitan presiones negativas en el fondo y evitar el efecto Spray, y también por tener la popa de espejo, que favorecerá la separación efectiva del flujo de agua a partir de llegar a Fn = 0,45.

Este tipo de carena se comporta mejor que las de formas redondas cuando se navega a muy alta velocidad, ya que su fondo puede generar mayor sustentación dinámica. Estas son las formas más usadas en las embarcaciones recreativas a motor que se desplazan en régimen de planeo. Y por tanto serán las formas elegidas para el diseño de la carena de este proyecto.

Proyecto de Embarcación de recreo tipo Open de 18m. L. 4. Diseño de la Carena.

Independientemente a tipo de formas redondas o con codillo duro, las formas de las secciones trasversales y longitudinales de la carena también condicionaran la resistencia, la sustentación, la velocidad y el comportamiento de la embarcación.

Sección Transversal.

Sección Transversal Cóncava. Unas secciones con concavidad en el fondo de la carena producen una disminución de la superficie mojada, por tanto una menor resistencia, pero favorece la formación de spray y sitúa el punto de estancamiento o Lcp muy a popa, lo que provoca el fenómeno de Porpoising con facilidad.

Sección Transversal Convexa. Al contrario que las secciones cóncavas, las convexas hacen que la superficie mojada dinámica aumente, por tanto aumenta la resistencia. Por otra parte estos fondos tienden a crear presiones negativas, disminuyendo el empuje.

Sección Transversal Recta. Los fondos rectos son los que proporcionan un comportamiento más homogéneo entre superficie mojada, formación de spray, situación longitudinal del centro de presión, etc.

Proyecto de Embarcación de recreo tipo Open de 18m. L. 4. Diseño de la Carena.

Sección Longitudinal.

Fondo Cóncavo. Ofrece un mejor rendimiento a un régimen de planeo de baja velocidad, sitúa el punto de máxima presión muy a popa, por lo que al aumentar la velocidad se reduce el trimado, aumentando la superficie mojada, siendo esto un lastre para alcanzar mayor velocidad.

Fondo Convexo. Ofrece un mejor rendimiento con un planeo a alta velocidad. Sitúa el punto de máxima presión cerca de la proa por lo que al aumentar su velocidad también aumentara su trimado, reduciendo su superficie mojada dinámica.

Fondo Plano. Ofrece un óptimo rendimiento a todos los regimenes de planeo. Sitúa el punto de máxima presión en la zona central por lo que según aumente su velocidad, el trimado de la embarcación permanecerá prácticamente constante, permaneciendo prácticamente invariable la superficie mojada de este.

Por tanto como las secciones transversales rectas y los fondos rectos son los que ofrecen un comportamiento y un rendimiento más homogéneos que los cóncavos o convexos en un mayor rango de velocidades, estos serán los elegidos para el diseño de la carena. Con lo cual tendremos una carena de codillos duros en forma de V con una astilla muerta evolutiva con fondo recto y secciones longitudinales rectas.

4. Diseño de la Carena.

Tras definir básicamente las formas de la carena, hay que definir una serie de parámetros básicos antes de comenzar el proceso de diseño, como pueden ser: B_{wl} , β , Superficie Mojada, T_c , L_{wl} , etc.

Manga en la Flotación Bwl.

Es uno de los parámetros que intervienen tanto en el cálculo de la resistencia como en su influencia en la estabilidad transversal. Por una parte la manga nos proporciona una cantidad de superficie de sustentación, y le dará estabilidad transversal por formas, pero esa misma superficie aumenta la resistencia friccional del casco. Por tanto hay que buscar el compromiso optimo entre los vértices del triangulo Resistencia-Estabilidad-Sustentación.

β Angulo de Astilla Muerta.

El ángulo de astilla muerta será el que determine la capacidad de la carena de generar empuje hidrodinámico. Partiendo de que una placa plana seria la superficie que proporciona mayor empuje, este irá disminuyendo a medida que se aumente el ángulo.

Factores para aumentar el ángulo de Astilla Muerta:

- Una astilla muerta alta hace que disminuyan las aceleraciones verticales debido a las olas de proa en condiciones de mala mar.
- Favorece la estabilidad direccional, aumentando la estabilidad de rumbo y disminuyendo los poco deseables movimientos de balance y de guiñada.
- Aumenta el límite de estabilidad longitudinal, por tanto la embarcación puede navegar más rápido sin peligro de inestabilidad, disminuyendo la posibilidad de que se produzca el fenómeno de "porpoising".

4. Diseño de la Carena.

- Disminuye el volumen interior, por tanto la habitabilidad.

Factores para disminuir el ángulo de Astilla Muerta:

- Un menor ángulo favorece la eficacia de planeo, ya que se asemeja más al planeo de una placa plana.
- Disminuye el efecto Spray, por tanto la resistencia.
- Disminuye el efecto escorante que se producen durante los giros a alta velocidad.
- Aumenta el volumen interior teniendo por tanto mayor habitabilidad.

Por tanto y para finalizar con la astilla muerta, se puede decir que esta será de aproximadamente unos 17º para ir evolucionando lentamente hasta un ángulo superior a 20º en la maestra para seguir aumentando desde ese punto mas rápidamente para lograr que en la perpendicular de proa tener un ángulo que pueda cortar las olas con facilidad.

Tc Calado del Casco.

El calado del casco está condicionado por la manga de flotacion, el ángulo de astilla muerta y por la profundidad del codillo, por tanto para definirlo antes hay que tener definidos los demás, dando como resultado el calado del casco.

L_{wl} Eslora de Flotación.

Este parámetro es uno de los indicadores que presentan los cascos más rápidos, en estos modelos la eslora de flotación se presenta mucho menor que en otros de crucero más relajado. Es decir, la relación entre la eslora de flotación y la eslora total será menor cuanto más rápida sea la embarcación. Condicionado por este se encuentra otro valor como es el semiángulo de entrada en la flotación, que también disminuirá junto con la eslora de flotación,

4. Diseño de la Carena.

provocando con esto que el comportamiento de la carena se aproxime a un fondo completamente plano, que es la superficie de planeo más eficiente.

Superficie Mojada.

La superficie mojada es muy difícil de cuantificar, ya que depende de muchos factores: Formas del casco, efectividad de los junquillos anti-spray, condición de carga, trimado real, velocidad de la embarcación, estado del mar, etc.

Criterios de Resistencia.

El método más utilizado para calcular la resistencia en planeo de una carena es el de Savistky, el cual realizó una serie de experimentos con placas planas y obtuvo una serie de fórmulas empíricas para extrapolar a fondos no planos. Aplicando el método de Savistky junto con el método de Hadler, con el cual se calculan los momentos ocasionados por la fuerza hidrodinámica, la resistencia por fricción y la resistencia de los apéndices, obtendremos los momentos resultantes, a partir de ahí se realizará una extrapolación lineal para determinar el ángulo de asiento de equilibrio con el cual calcularemos la Resistencia al Avance en Planeo.

<u>Proyecto de Embarcación de recreo tipo Open de 18m. L.</u> <u>4. Diseño de la Carena.</u>

Método de Savistky-Hadler.

1. Datos de Partida.

Símbolos	Parámetros	Valores
М	Desplazamiento	25807 Kg.
LCG	Distancia Longitudinal de popa al c.d.g.	5,875 m.
VCG	Distancia Vertical desde la línea base al c.d.g. (KG)	2,1 m.
b	Manga Máxima entre pantoques	4,32 m.
3	Inclinación del eje relativa a la línea base	50
β	Angulo de astilla muerta (valor medio entre popa y la sección en c.d.g.)	18,910
f	Distancia entre el eje y el c.d.g.	0,65 m.
V	Velocidad	45 Kn.

2. Calcular el Coeficiente de Velocidad Cv.

$$Cv = \frac{V}{\sqrt{g * B}}$$

4. Diseño de la Carena.

3. Calcular el coeficiente de Sustentación.

$$C_{l\beta} = \frac{m * g}{0.5 * \rho * v^2 * b^2}$$

4. Computar el Coeficiente de Sustentación para fondos rectos C_{lo} de la fórmula siguiente mediante ensayo y error (calcular el valor de C_{lo} para obtener el valor de C_{lB} obtenido en el punto anterior).

$$C_{L\beta} = C_{lo} - 0.0065 * \beta * C_{lo}^{0.6}$$

5. Asumir un valor de ángulo de trimado.

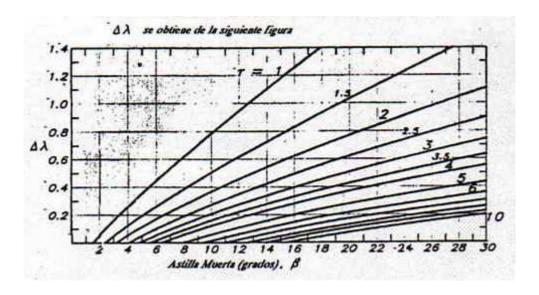
$$\tau_{1} = 4^{\circ}$$

6. Computar la relación de eslora mojada-manga, λ utilizando la fórmula siguiente, por ensayo y error calcular λ para el valor de C_{lo} Obtenido en el punto 4.

$$C_{lo} = \tau^{1,1} * (0.012 * \lambda^{0.5} + 0.0055 * \frac{\lambda^{2.5}}{Cv^2})$$

7. Calcular la eslora media mojada, L_m según la fórmula siguiente y obtener el número de Reynolds (Rn) usando L_m .

$$\lambda = \frac{L_m}{b}$$


$$R_n = \frac{V * L_m}{D}$$

8. Calcular el Coeficiente de Fricción según la fórmula de ITTC.

$$C_f = \frac{0.075}{(Log \ R_n - 2)^2}$$

4. Diseño de la Carena.

9. Hallar el incremento de λ debido al spray, $\Delta\lambda$ usando la gráfica y obtener la resistencia por fricción.

$$R_f = C_f *0.5*\varphi *V^2*(\lambda + \Delta \lambda)*b^2 /\cos \beta$$

10. Calcular el brazo de la palanca ff para la R_f relativo al centro de gravedad, según la fórmula siguiente.

$$ff = VCG - \left(\frac{b}{4}\right) * \tan \beta$$

- 11. Calcular la Resistencia de Apéndices. (en este caso no se calcula).
- 12. Calcular el brazo de palanca fa (en este caso no se calcula).
- 13. Calcular la posición longitudinal del centro de presión L_{cp} (distancia medida desde el espejo de popa), utilizando la fórmula

4. Diseño de la Carena.

siguiente, y asumiendo que L_w es igual a L_m para fondos con astilla muerta.

$$\frac{L_{cp}}{L_{w}} = 0.75 - \frac{1}{\frac{5.21*C_{v}^{2}}{\lambda^{2}} + 2.39}$$

14. Calcular el brazo de palanca para la fuerza de presión, e, como diferencia entre LCG y L_{cp} .

$$e = LCG - L_{cp}$$

15. Calcular el Momento de cabeceo resultante M, como suma de los momentos M_h (originado por N y el brazo e), y M_f (originado por R_f y el brazo ff), utilizando las fórmulas siguientes. (no se incluye el momento originado por los apéndices).

$$M_h = g * m * \left[\frac{e * \cos(\tau + \varepsilon)}{\cos \varepsilon} - f * \frac{\sin \tau}{\cos \varepsilon} \right]$$

$$M_f = R_f * \left[ff - e * \tan \varepsilon - \frac{f}{\cos \varepsilon} \right]$$

$$M = M_h + M_f$$

16. Dado que el ángulo de trimado se ha elegido aleatoriamente, lo normal es que el momento resultante sea distinto de cero, con lo que es necesario variarlo para conseguir el equilibrio. Es necesario volver al punto 5 y repetir los cálculos con otro valor de τ , (llamado τ_2), teniendo en cuenta que si el Momento resultante es negativo debemos incrementar el trimado y si es positivo reducirlo.

4. Diseño de la Carena.

17. Calcular el trimado de equilibrio τ_0 , como interpolación lineal con esta fórmula.

$$\tau_0 = \tau_1 - \frac{M_1 * (\tau_2 - \tau_1)}{M_2 - M_1}$$

18. Calcular la resistencia de fricción en el trimado de equilibrio, Rf0 mediante interpolación lineal, usando la fórmula siguiente.

$$R_{f0} = R_{f1} + \frac{R_{f2} - R_{f1}}{\tau_2 - \tau_1} * (\tau_0 - \tau_1)$$

19. Calcular la Resistencia Total, R, usando la fórmula siguiente.

$$R = \left[g * m * sen \tau_0 + R_f\right] * \frac{\cos(\tau_0 + \varepsilon)}{\cos \varepsilon}$$

20. Calcular la Potencia Efectiva.

$$P_E = V * R$$

21. Calcular la Potencia Total. Para ello hay que aplicar el factor de corrección debido al rendimiento de la propulsión.

$$P_D = P_E / R_P$$

4. Diseño de la Carena.

Resultados Finales.

		Trimado 1º	Trimado 2º	Trimado de Equilibrio
2	Cv	3,556	3,556	
3	CLB (1)	0,0493	0,0493	
	CLB (2)	0,0493	0,0493	
4	CLo (1)	0,0754	0,0754	
	CLo (2)	0,0754	0,0754	
5	Trimado	4	5	
6	Lambda	1,575	2,407	
7	Lm	6,804	10,398	
	Rn	1,335*10 ⁸	2,040*10 ⁸	
8	Cf	0,0020	0,019	
9	Increm. lambda	0,35	0,28	
	Rf	20,869	27,454	
10	ff	1,73	1,73	
13	Lcp	4,868	7,043	
	е	1,004	-1,171	
14	Mh	240,493	-303,365	
	Mf	20,647	26,288	
15	М	261,139	-277,077	
17	Trimado medio			3,977
18	Rfo			21,022
19	R			38,252
20	Pe			885,545
	Rendimiento			0,5
21	Pd			1771,1

4. Diseño de la Carena.

Para finalizar esta sección se adjunta el plano de formas a escala 1:110 en formato A4. el mismo se encuentra en el anexo final en formato A3 a escala 1:75.

<u>Sección 5.</u> <u>Diseño de Interiores y</u> <u>Exteriores.</u>

5. DISEÑO DE INTERIORES Y EXTERIORES.

1. Diseño Interior.

Para la disposición interior se parte de la base que el armador quiere: 3 camarotes dobles con aseos independientes cada uno, una cocina y un salón. Los camarotes y las zonas comunes tendrán un control climático y luminoso independiente de los demás, así como todos los compartimentos de la habilitación tendrán luz exterior ya sea por portillos laterales o cenitales. Las camas de los camarotes estarán todas dispuestas paralelas a la línea de crujia.

Camarote Principal.

Este se sitúa en la zona más a popa de la habilitación interior, limitando con el mamparo de la cámara de máquinas en su zona posterior. Situándose por tanto en la zona central del buque, aprovechando así toda la manga de este. Dispone de una cama doble en posición central, desplazada a estribor y paralela a la línea de crujía, el costado de estribor está totalmente cubierto por un armario doble y en su zona más alta dispone de un portillo practicable para proporcionar luz solar y ventilación con el exterior, el costado de babor está totalmente cubierto por el aseo. Entre la cama y el aseo se ha colocado un mueble de tocador con un sillón. El aseo posee ducha independiente, inodoro químico, extractor de gases y un portillo abatible.

La altura de todo el camarote es de 2,15 mts. Incluyendo el aseo.

Proyecto de Embarcación de recreo tipo Open de 18m. L. 5. Diseño de Interiores y Exteriores.

Camarote Central.

Situado en el costado de estribor de la embarcación, consta de dos camas individuales las cuales pueden tener dos opciones de distribución en el camarote, las dos en el suelo o en litera, siendo esta opción preferible si el espacio es muy pequeño. En este caso, ya que no hay problemas de espacio, se prefieren colocar las dos camas bajas, proporcionando un mejor acceso a estas. En el costado de estribor se encuentran un portillo oval y un armario.

A proa del camarote se dispone el aseo independiente de este, que consta al igual que los otros de ducha separada, inodoro químico, extractor de gases y portillo abatible.

La altura del camarote es de 2,15 mts. Reduciéndose en este caso la del aseo a 2,00 mts. Excepto en la ducha, la cual queda empotrada en el suelo, ampliando la altura útil en su interior.

Camarote de Proa.

Situado a proa de la habilitación, se accede desde el salón y tras la puerta se encuentra con dos escalones, ya que al cerrarse las formas de la carena en proa hay que levantar el nivel del piso en 500 mm. En el interior se coloca una cama doble en posición central en línea con crujía pero girada 180º en el sentido de la marcha. En su costado de babor se encuentra un armario y en su costado de estribor está el aseo. En ambos costados tiene portillos ovales abatibles.

el aseo posee al igual que los otros dos el inodoro químico, lavabo y ducha independiente, en este caso no es rectangular, sino angular.

5. Diseño de Interiores y Exteriores.

La altura del camarote es de 2,00 mts. En la entrada del camarote, en el aseo, reduciéndose la altura libre a 1,30 mts. En la zona superior de la cama.

Cocina.

La cocina se sitúa en la banda de babor siendo sus límites la escalera de acceso a la habilitación y el propio costado del casco. En el fondo de la cocina se sitúa el frigorífico congelador de grandes dimensiones, y sobre la encimera la placa vitrocerámica y los fregaderos.

La altura en toda la cocina es de 2,15 mts. siendo el ancho de 0,6 mts. ampliándose el ancho a partir de la encimera, ya que los muebles superiores son más estrechos y además al abrirse más los costados en esa altura, pueden colocarse más al separados aun, dando una mayor sensación de amplitud.

Salón-Comedor.

El salón al que se accede directamente desde cubierta por las escaleras, se sitúa en la banda de babor, este consta de un sofá angular para 5 personas con una mesa a medida de la misma forma que el sofá, en la otra banda del salón, en el mamparo del camarote central, hay un pequeño mueble en forma de "saliente" del mamparo que sirve para colocar un televisor de plasma extraplano, el equipo de música, bar, etc.

El conjunto sofá-mesa, puede ser modificado para usarse como una eventual cama doble.

La altura libre en todo el salón se sitúa como en toda la zona central en 2,15 mts.

Proyecto de Embarcación de recreo tipo Open de 18m. L. 5. Diseño de Interiores y Exteriores.

2. Diseño Exterior.

Plataforma de baño-Bañera.

Comenzando por popa destaca en primera instancia la amplia plataforma de baño, a la cual se accede desde la bañera por las dos escaleras laterales que rodean el solarium de popa. En ambos laterales de la plataforma de baño se instalarán escalas totalmente escamoteables para el acceso al mar. Se instalarán en los laterales ya que su zona trasera está ocupada por el sistema de propulsión. El solarium es en realidad el techo del garaje de popa, el cual alberga en su interior la moto de agua y las defensas del barco. En un escalón de la escalera de babor se aloja la pasarela hidráulica totalmente escamoteable.

La bañera únicamente posee el solarium en posición central y da acceso a la cubierta de proa por los dos pasillos laterales y al cockpit mediante una puerta central.

Cockpit.

El cockpit está distribuido en dos zonas, la zona de gobierno, que seria la parte más a proa, y la zona de ocio, que seria toda la zona trasera del cockpit. En esta zona se ha buscado sobre todo mucha amplitud, permitiendo mucha libertad de movimiento, ofreciendo un amplio salón con un gran sofá en forma de gran "U" que recorre toda la banda de babor. El sofá está presidido por una mesa a medida de este. En el interior del sofá quedan alojados los chalecos salvavidas. En la banda contraria, se sitúa una amplia barra en la que se disponen una zona de cocina-barbacoa, mini-frigorífico,

5. Diseño de Interiores y Exteriores.

mueble bar, televisión y música. Y una zona de barra de cocktail con un par de taburetes altos.

La zona de gobierno propiamente dicha se sitúa en la banda de estribor de la embarcación ofreciendo dos amplios asientos individuales para el patrón y un acompañante, los cuales limitan por su parte trasera con la barra de cocktail. La escalera que comunica con el interior de la embarcación se sitúa en la zona de proa del cockpit algo desplazada a babor respecto de la línea de crujía.

Como opción se podría ofrecer el presidir el techo del cockpit por uno de cristal escamoteable, el cual le transfiere una gran luminosidad a todo el interior, pero para eso habría que rediseñar la estructura del cockpit completamente. Al igual que haría que el peso aumentase ya que es bastante más pesado.

Cubierta de Proa.

A la cubierta de proa se accede a través de los dos pasillos laterales asegurados por los amplios y altos pasamanos de acero inoxidable que acompañan al pasillo hasta cerrarse en la misma proa de la embarcación, la superficie de la cubierta se encuentra sobreelevada sobre el nivel de los pasillos para dar una gran altura interior y para albergar en su interior un garaje para una semirrigida auxiliar de 3,5 mts y la grúa que realiza el embarque y desembarque de dicha lancha. La puerta superior del garaje se encuentra totalmente acolchada y tapizada para ofrecer un amplio solarium de proa.

En el extremo de proa se encuentran el ancla y el molinete, bajo ellos se esconde el habitáculo de la caja de cadenas y tras el molinete se sitúan dos bitas de acero inox, una para cada banda, con sus guía cabos y en el centro de las bitas un pequeño winche.

5. Diseño de Interiores y Exteriores.

Para finalizar esta sección se adjuntan los siguientes planos a escala 1:110 en formato A4. Los mismos se encuentran en el anexo final en formato A3 a escala 1:75.

- Plano de Planta y de Perfil.
- Plano de Cubiertas 1 y 2.
- Plano de sección longitudinal.
- Plano de secciones transversales.

<u>Sección 6.</u> <u>Sistemas de Abordo.</u>

6. Sistemas de Abordo.

6. SISTEMAS DE ABORDO.

Sistema Eléctrico.

El sistema eléctrico está compuesto por un generador de corriente diesel Mase IS 23.1 de 23,1 kW de potencia, que se encarga de suministrar la corriente alterna de 230 V. para la embarcación, así mismo también hay instalado un alternador que se encarga de convertir dicha corriente en continua de 12 V. para el suministro de los sistemas de navegación, alumbrado interior y exterior, luces de navegación y de los equipos que necesiten este tipo de energía. Para el suministro de 12 V. también hay instaladas 6 baterías de servicio y 4 baterías más para el arranque de los motores principales y del generador. La carga de todas estas baterías se efectuará mediante 2 cargadores de baterías independientes ya que el circuito de servicio es diferente del de arranque de motores.

Todos los sistemas generadores de energía están colocados en el interior de la cámara de máquinas, instalándose sistemas cortacorrientes en el puesto de gobierno de la embarcación y en el panel de control interior, colocado en el lateral de babor de la escalera.

<u>Sistema de Climatización.</u>

El sistema de climatización será de tipo inverter con bomba de calor y multi-split. El dimensionamiento, marca y modelo del aparato de climatización será el que el técnico de esta área considere necesario. En la habilitación existen 5 zonas diferentes a climatizar,

6. Sistemas de Abordo.

los 3 camarotes, las zonas comunes interiores (cocina-salón) y el cockpit exterior, ya que este está aislado del exterior mediante cristaleras.

El climatizador irá colocado en la sala de máquinas, y los split se colocaran en el lugar más apropiado según el criterio del instalador. Los desagües de los split se conectaran a los del aseo más cercano.

<u>Sistema de Agua Potable.</u>

El sistema de agua potable consta de un depósito de 800 lts de acero inoxidable instalado en la cámara de máquinas, a la salida del depósito se instalaran un filtro de malla anti-partículas, otro filtro de carbón activo y una lámpara de luz ultravioleta antibacterias.

Para el suministro de agua se dispondrá de un grupo de presión con una bomba centrífuga autocebante con regulador de presión y un acumulador hidroneumático de 100 lts.

El sistema de agua caliente se servirá de un calentador eléctrico de 200 lts de capacidad.

Todas las tuberías del sistema de aguas potables serán de polietileno reticulado PEX (wirsbo), las llaves de paso serán de bola de acero inoxidable y todas las conducciones de agua serán recubiertas de Armaflex del tipo SH, identificando con bandas de diferente color las de agua fría y caliente.

El depósito de agua dulce tendrá una toma para el llenado en la cubierta al igual que un respiradero, una tapa de registro atornillada y dispondrá de un nivel que pueda consultarse desde el puesto de gobierno e in situ.

Se dispondrá de servicio de agua fría y caliente en los tres aseos, en la cocina, en la cocina exterior y en una ducha en la

6. Sistemas de Abordo.

plataforma de baño. En esta también se dispondrá de un grifo de agua fría para el baldeo.

Sistema de Aguas Sucias.

Este apartado se divide en dos, aguas grises y aguas negras. Las grises son aquellas que proceden de los lavabos, las duchas y los fregaderos y las aguas negras son las procedentes de los inodoros.

Cada una tendrá un deposito separado en la cámara de máquinas, pudiendo el de aguas grises verterse directamente al mar o a través de una boca de descarga situada en el garaje de popa cerca de la toma de tierra. Las aguas negras solo podrán verterse por la boca de descarga del garaje.

Ambos sistemas serán de del tipo "jet vacuum" y para la descarga contaran con bombas trituradoras. Todas las tuberías de ambos sistemas serán de PVC de alta presión.

Sist. De Ventilación de la Cámara de Máquinas.

El sistema de ventilación de la cámara de máquinas tiene que ser capaz de proporcionar el flujo de aire suficiente para suministrar aire limpio a los motores principales y al generador a plena potencia y para eliminar el calor que estos disipan.

Los ventiladores han de ser capaces de mantener la temperatura interior como máximo a 14º más de la temperatura exterior.

Proyecto de Embarcación de recreo tipo Open de 18m. L. 6. Sistemas de Abordo.

Sistema de Achique.

Consta de una bomba de achique principal con un caudal mínimo de 5,5 m³/h y de otra bomba de achique manual con un caudal mínimo de 1,13 m³/h tal y como estima ABS para este tipo de embarcación menor de 20 mts.

<u>Sistema de Maniobra y Fondeo.</u>

Según el articulo 11 del capítulo 2 del Real Decreto 1434/1999 del 10 de septiembre, el cual regula las líneas de fondeo, el sistema de fondeo debe de constar de un ancla de acero inoxidable de alto poder de agarre de 50 kg de peso aproximadamente, una cadena de al menos 5 esloras de longitud (unos 95-100 m) de 10mm de grosor de eslabón. El diámetro de las estachas para el amarre en puerto serán de 14mm.

El sistema de fondeo consta por tanto de un ancla de alto poder de agarre de 50 kg de peso modelo "Bruce" de acero inoxidable Aisi 316 de la marca Rigamonti, las cadenas, quita-vueltas y el soporte del ancla son también de la misma marca. El molinete será vertical, modelo "Antares 1500" de la marca Quick.

El sistema de atraque consta en la cubierta de proa de dos bitas de acero inoxidable, sendos guía-cabos de acero inox, de la misma marca que los demás elementos de fondeo. En medio de las bitas se ha instalado un winche vertical de atraque. En popa dispone en ambas bandas en el lateral exterior de las escaleras una bita y un winche para atracar y mantener amarrado el yate por la popa.

Proyecto de Embarcación de recreo tipo Open de 18m. L. 6. Sistemas de Abordo.

Sistema Contra-incendios y de Extinción.

Al ser esta una embarcación de menos de 20 mts se podría utilizar la bomba de achique principal como bomba contraincendios, pero al tener esta embarcación más de 1000 CV esta ha de tener una instalación contraincendios propia, con lo cual debe tener una bomba cuyo caudal mínimo sea de 5,5 m³/h, y ha de proporcionar una presión adecuada. Las mangueras pueden ser las comerciales de jardín de mayor calidad con un diámetro mínimo de 18 mm y con un máximo de 38 mm.

También se dispone de una bomba manual cuyo caudal mínimo es de 1,10 m³/h.

Se dispondrán de los extintores de incendios manuales que la sociedad de clasificación estime en los lugares precisos y del tipo establecido.

Salvamento.

La embarcación al englobarse dentro de la categoría de navegación B, estará provista de una balsa salvavidas alojada en la zona de estribor de la bañera, justo tras el mamparo que limita el cockpit con capacidad para 14 personas, con 14 chalecos salvavidas y un aro salvavidas con luz y rabiza. También estará provista de todas las medidas de salvamento y seguridad requeridas por ABS y por SOLAS para una embarcación como esta, para la categoría de navegación B.

Proyecto de Embarcación de recreo tipo Open de 18m. L. 6. Sistemas de Abordo.

<u>Sistemas de Gobierno y Luces.</u>

En el alerón del techo de la superestructura irán colocadas las luces de navegación homologadas así como los sistemas de radar, antenas y sistemas de localización que el armador, astillero y reglamentación establezcan.

El buque montará un sistema integrado de vigilancia, alarmas y medición de los distintos equipos que configuran la planta propulsora, planta eléctrica y servicios auxiliares más relevantes.

El tipo y dimensionamiento de los sistemas de gobierno deben ser supervisados por un especialista en la materia.

Sistema de llenado y trasiego de Combustible.

El sistema de llenado de combustible se realizará mediante una toma en el interior del garaje de popa, contiguo a la cámara de máquinas, esta dispondrá de un cono de acero inoxidable para evitar los derrames. Las tuberías del sistema de combustible serán de acero inoxidable AISI 304 con acabado pulido.

Los tanques de combustible serán 2, estructurales de poliéster con acabado interior de Plastigel u otro tratamiento similar que soporte el gasoil. El sistema de aireación de los tanques tendrá válvulas y filtros anti-olores.

A su salida se instalaran dos bombas centrífugas autocebantes cuyo caudal será un 10% superior al consumo máximo de los dos motores principales y el generador de corriente. El combustible tiene que pasar por dos filtros de impurezas y un centrifugador para eliminarle el agua que pudiera contener.

<u>Sección 7.</u> <u>Cálculo del Escantillonado.</u>

7. CÁLCULO DEL ESCANTILLONADO.

Para obtener el escantillonado de la estructura de la embarcación se ha recurrido a la sociedad de clasificación ABS, ya que dispone de una reglamentación exclusiva para embarcaciones de alta velocidad, <u>GUIDE FOR BUILDING AND CLASSING HIGH</u>

SPEED NAVAL CRAFT 2007.

Tal y como se puede ver en este título, la norma es de 2007, por lo que está totalmente actualizada, ya que apareció en 1993, y desde entonces ha sufrido varia modificaciones, la ultima data del 1 de enero de 2007.

Ya dentro de esta norma, hay que acogerse a su tercera parte: **PART 3: HULL CONSTRUCTION AND EQUIPMENT**.

Y dentro de esta tercera parte, al capítulo 2: <u>HULL</u> <u>STRUCTURES AND ARRANGEMENTS</u>.

Sección 1: Esfuerzos primarios del casco.

1. Esfuerzo longitudinal de la viga buque.

1.1 <u>Módulo Resistente</u>.

SM = C1C2L2B(Cb + 0.7)K3CQ cm2-m

De donde:

C1 = 0.044L + 3.75 L < 90 m

C2 = 0.01

7. Cálculo del Escantillonado.

L = Eslora de la embarcación en metros (eslora de flotación, según se define en Section 3-1-1)

B = Manga de flotación, según se define en Section 3-1-1.

V = velocidad máxima en nudos para la condición de carga considerada.

Cb = Coeficiente de bloque.

$$K_3 = \left[0.70 + 0.30 \left[\frac{V/\sqrt{L}}{2.36} \right] \right]$$

 K_3 no puede tomarse superior a 1,3 ni inferior a 1.

C = 0.80 para embarcaciones de fibra.

 $Q = 400/0.75\sigma_u$

 σ_u = Mínimo esfuerzo de compresión o de tensión, el menor de ambos, en N/mm2.

	Modulo Resistente	
C1	4,405	
L	15,03	mts
C2	0,01	
В	5	mts
V	45	Knots
Cb	0,478	
K3	2,182	1,3
Tu	117	N/mm ²
Q	4,558	
С	0,800	
SM	272,993	cm² - m

7. Cálculo del Escantillonado.

1.5 Momento de Inercia.

El momento de inercia debe ser mayor al resultado de la siguiente ecuación:

$$I = \frac{L}{QC} \frac{SM}{K} \quad cm^2 - m^2$$

Donde:

SM = Modulo resistente.

Factor, K

L (m, ft)	Steel	Aluminum	FRP (Basic Laminate)
10 (33)	10.89	3.63	0.36
30 (100)	16.50	5.50	0.55
50 (165)	22.10	7.37	0.74
70 (230)	27.40	9.13	0.91
90 (295)	33.00	11.00	1.10

$$K = 0.4$$

Momento de Inercia				
L	15,03	mts		
Q	4,558			
С	0,800			
SM	272,993	cm ² - m		
K	0,4			
I	2787,966	cm ² - m ²		

7. Cálculo del Escantillonado.

Sección 2: Presiones de Diseño.

1. Monocascos.

1.1 Presión de diseño en el fondo.

La presión de diseño en el fondo ha de ser superior a la indicada en la formula siguiente. Por otra parte, la presión de diseño en el fondo, se aplica a la superficie del casco entre los dos codillos.

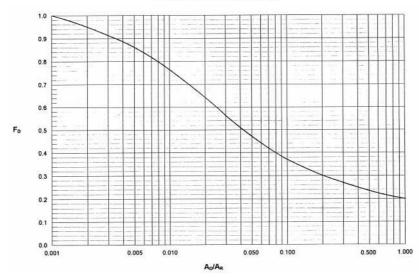
1.1.1. Presión de diseño por Pantocazos.

(Calado Máximo)

$$P_{bcg} = \frac{N_1 \Delta}{L_w B_w} \left[1 + n_{cg} \right] F_D \quad kN/m^2$$

Donde:

ncg = aceleración vertical de la embarcación, nunca mayor a :


$$ncg = 1,39 + k_n \frac{V}{\sqrt{L}}$$

kn = 0.256

N1 = 0.1

 Δ = Desplazamiento, en kg.

Design Area Factor FD

$$FD = 0.75$$

7. Cálculo del Escantillonado.

Presión de diseño en el Fondo				
Desplazamiento Máximo				
Presión por pantocazos(Fondo LCG)				
N1	0,1			
Δ	28111	Kg		
Lw	15,03	mts		
Bw	4,328	mts		
n _{cg}	4,375	g´s		
Fd	0,75			
V	45	Knots		
Pbcg	175,7547	Kn / m ²		

1.1.3 Presión hidrostática de diseño en el fondo. (Calado Máximo)

$$P_d = N_3 (0,64H + d)$$

Donde:

 $N_3 = 9,8$

H=0,0172 L + 3,653 mts.

d = calado.

Desplazamiento Máximo				
Presión Hidrostática(Fondo LCG)				
N3	9,8			
Н	3,909	mts		
L	15,03	mts		
D	0,93	mts		
Pd	33,633	Kn / m ²		

Proyecto de Embarcación de recreo tipo Open de 18m. L. 7. Cálculo del Escantillonado.

Las mismas operaciones hay que realizarlas con la embarcación a media carga y en rosca, aquí están los resultados en estas dos situaciones de carga.

Presión de diseño en el Fondo			
Desplazamiento Medio			
Presión por pantocazos(Fondo LCG)			
N1	0,1		
Δ	25752	Kg	
Lw	15,01	mts	
Bw	4,315	mts	
n _{cg}	4,36346	g´s	
Fd	0,75		
V	45	Knots	
Pbcg	159,939	Kn / m ²	

Desplazamiento Medio			
Presión Hidrostática(Fondo LCG)			
N3	9,8		
Н	3,911	mts	
L	15,01	mts	
d	0,91	mts	
Pd	33,449	Kn / m ²	

7. Cálculo del Escantillonado.

Presión de diseño en el Fondo		
Desplazamiento Mínimo		
Presión por pantocazos(Fondo LCG)		
N1	0,1	
Δ	23700	Kg
Lw	14,921	mts
Bw	4,31	mts
n _{cg}	4,3723	g´s
Fd	0,75	
V	45	Knots
Pbcg	148,489546	Kn / m ²

Desplazamiento Mínimo		
Presión Hidrostática(Fondo LCG)		
N3	9,8	
Н	3,909	mts
L	14,897	mts
d	0,86	mts
Pd	32,947	Kn / m ²

7. Cálculo del Escantillonado.

1.3 Presión de diseño en los Costados.

1.3.1 Presión de diseño en los Costados por pantocazos. (Calado Máximo)

$$P_{SXX} = \frac{N_1 \Delta}{L_W B_W} [1 + n_{XX}] \left[\frac{70 - \beta_{SX}}{70 - \beta_{cg}} \right] F_D \quad kN/m^2$$

Donde:

Presión de diseño en los Costados				
Desplazamiento Máximo				
Presión por pantocazos				
N1	0,1			
Δ	28111	Kg		
Lw	14,897	mts		
Bw	4,328	mts		
n _{cg}	3,234	g´s		
Fd	0,75			
βbx	17			
βсд	18,97			
V	40	Knots		
Pbxx	143,814	Kn / m²		

1.3.2 Presión hidrostática de diseño en el Costado.

 $P_S = N_3 (H_S - y)$

Donde:

 $H_S = 0.083L + d$

Y= distancia sobre la línea base del punto a considerar.

Proyecto de Embarcación de recreo tipo Open de 18m. L. 7. Cálculo del Escantillonado.

Desplazamiento Máximo			
Presión Hidrostática			
N3	9,8		
Hs	4,405	mts	
L	15,03	mts	
d	0,95	mts	
У	0,75		
D	3,185	mts	
Pd	35,819	Kn / m ²	

Al igual que ocurre con la presión en el fondo, la presión en los costados también hay que obtenerla en las tres condiciones de carga habituales, por tanto, aquí están las condiciones de media carga y de rosca.

7. Cálculo del Escantillonado.

Presión de diseño en los Costados			
Desplazamiento Medio			
Presión por pantocazos			
N1	0,1		
Δ	25752	Kg	
Lw	15,01	mts	
Bw	4,315	mts	
n _{cg}	3,332	g´s	
Fd	0,75		
βbx	17		
βсд	18,97		
V	42	Knots	
Pbxx	134,174	Kn / m²	

Desplazamiento Medio			
Presión Hidrostática			
N3	9,8		
Hs	4,405	mts	
L	15,01	mts	
d	0,91	mts	
У	0,75		
D	3,185	mts	
Pd	35,819	Kn / m ²	

7. Cálculo del Escantillonado.

Presión de diseño en los Costados					
Desplazamiento Mínimo					
Presión por pantocazos					
N1	0,1				
Δ	23700	Kg			
Lw	14,921	mts			
Bw	4,301	mts			
n _{cg}	3,498	g´s			
Fd	0,75				
βbx	17				
βсд	18,97				
V	45	Knots			
Pbxx	129,389	Kn / m ²			

Desplazamiento Mínimo			
Presión Hidrostática			
N3	9,8		
Hs	4,405	mts	
L	14,921	mts	
d	0,86	mts	
У	0,75		
D	3,185	mts	
Pd	35,819	Kn / m ²	

Proyecto de Embarcación de recreo tipo Open de 18m. L. 7. Cálculo del Escantillonado.

5. Presión de diseño en la Cubierta.

La presión de diseño en la cubierta depende de la posición que se quiera estudiar de esta según indica la tabla siguiente.

Deck Design Pressures, p_d

Location	kN/m^2	tf/m²	psi
Exposed freeboard deck, and superstructure and deckhouse decks forward of 0.25L.	0.20L + 7.6	0.020L + 0.77	0.0088L + 1.10
Freeboard deck inside enclosed superstructures and deckhouses, exposed superstructure and deckhouse decks aft of 0.25L, and internal decks included in the hull girder bending moment	0.10L + 6.1	0.010L + 0.62	0.0044L + 0.88
Enclosed accommodations decks	5.0	0.5	0.71
Concentrated deck cargo loads	$W(1 + 0.5n_{xx})$	$W(1 + 0.5n_{sc})$	$W(1 + 0.5n_{xx})$
Enclosed store rooms, machinery spaces, etc.	$\rho h (1 + 0.5 n_{xx})$	$\rho h (1 + 0.5 n_{xx})$	$(\rho/144)h(1+0.5n_{xx})$

Para la cubierta delantera, hay que utilizar la primera fórmula:

$$p_d = 0.20L + 7.6$$

L=15,03m

p_d =10,606 Kn / m^2

Como medida de seguridad, y al ser esta la mayor presión de diseño en la cubierta, se aplicará esta presión de diseño para calcular el espesor de toda la cubierta, no haciendo distinción entre las zonas de proa, cuerpo central o popa.

7. Cálculo del Escantillonado.

7. Superestructuras.

Superstructures and Deckhouses Design Pressures

SI Units:

Location	$L \le 12.2m$ (kN/m^2)	$12.2m < L \le$ $30.5m (kN/m^2)$	$30.5m < L \le$ $61m (kN/m^2)$	$61m < L \le 90m$ (kN/m^2)	$L > 90m (kN/m^2)$
Superstructure and Deckhouse Front, forward of 0.4L - 1st Tier	37.9	2.45L + 7.97	82.8	0.55L + 49.5	98.7
Superstructure and Deckhouse Front, aft of 0.4L - 1st Tier	24.1	0.75L + 15	37.9	2.1 <i>L</i> - 90	98.7
Superstructure and Deckhouse Front - 2 nd Tier and above	9.8(2 + L/200)	9.8(2 + L/200)	0.46L + 7.2	0.46L + 7.2	0.46L + 7.2
Superstructure and Deckhouse Aft Ends and House Sides 1st Tier	10.3	0.19L + 8	13.8	0.27L -2.6	0.27L - 2.6
Superstructure and Deckhouse Aft Ends and House Sides 2 nd Tier and Above	10.3	10.3	10.3	0.22L - 3.1	9.8(1.25 + L/200)
House Tops forward of L/2	6.9	0.09L + 5.75	8.6	8.6	8.6
House Tops aft of L/2	3.4	0.19L + 1.1	6.9	6.9	6.9

Dado que las fórmulas por las que nos tenemos que regir en este punto, nos dan unos valores inferiores a los obtenidos en esta tabla, hay que elegir como valores mínimos para la presión de diseño de la superestructura los obtenidos en esta tabla.

En la tabla hay que escoger las fórmulas de la segunda columna, ya que son los correspondientes a un rango de esloras entre 12,2 y 30,5 metros. Para el frontal de la superestructura, hay que escoger la segunda fila, para el lateral se escoge la cuarta y para el techo la ultima fila. Por tanto:

Frontal:

P=0,75L+15

 $P=26,273 \text{ Kn }/\text{ m}^2$

Lateral:

P=0,19L+8

 $P=10,856 \text{ Kn }/\text{ m}^2$

7. Cálculo del Escantillonado.

Techo:

$$P=0,19L+1,1$$

$$P=3,956 \text{ Kn }/\text{ m}^2$$

9.3 Límites Estancos.

En este punto se incluye el mamparo de cámara de máquinas y el instalado en la zona de proa, que limita la habilitación con la caja de cadenas.

$$P_w = N_3 * h$$

Donde:

$$N_3 = 9.8$$

h= altura desde la línea base al centro del panel.

$$P_w = 27,685 \text{ Kn} / \text{m}^2$$

Como la altura del centro del panel de proa es muy similar al del otro, se puede usar el mismo valor para calcularlo.

Sección 3: Planchas.

Las propiedades mecánicas del laminado básico que se va a usar en esta embarcación, tiene los siguientes valores:

MKS Units:

	Basic Laminate N/mm²	"S" Glass N/mm²	Kevlar N/mm²	Carbon N/mm²
Flexural Strength, F	172	450	230	500
Flexural Modulus, E_f	7580	18000	22000	43800
Tensile Strength, T	124	357	386	425
Tensile Modulus, E_t	6890	18800	22700	43800
Compressive Strength, C	117	299	142	284
Compressive Modulus, E_c	6890	18000	22500	43700

7. Cálculo del Escantillonado.

5.5 Espesores de plancha de fibra de laminado simple.

El espesor del casco y las cubiertas no debe ser menor que la menor de las indicadas en estas ecuaciones.

$$t = SC \sqrt{\frac{pk}{1000\sigma_a}} \text{ mm}$$

$$t = SC_3 \sqrt{\frac{pk_1}{1000k_2E_F}} \text{ mm}$$

$$t = k_3(c_1 + 0.26L)\sqrt{q_1}$$
 mm

Donde:

s= espaciado de los longitudinales del casco o de los refuerzos del panel, en mm.

c= factor de curvatura de las planchas, en dirección paralela a s.

p= presión de diseño.

k o k_1 = coeficiente que varia con el aspecto del panel.

Aspect Ratio Coefficient for Isotropic Plates

ℓ/s	k	k_1
>2.0	0.500	0.028
2.0	0.497	0.028
1.9	0.493	0.027
1.8	0.487	0.027
1.7	0.479	0.026
1.6	0.468	0.025
1.5	0.454	0.024
1.4	0.436	0.024
1.3	0.412	0.021
1.2	0.383	0.019
1.1	0.348	0.017
1.0	0.308	0.014

$$K_b = 2,5$$

7. Cálculo del Escantillonado.

 σ_a = Esfuerzo de diseño.

Design Stresses for FRP, σ_a

Bottom Shell	$0.33 \sigma_{\!\scriptscriptstyle M}$
Side Shell	$0.33 \sigma_{\!\scriptscriptstyle M}$
Decks	$0.33 \sigma_{\!\scriptscriptstyle M}$
Superstructure and Deckhouses - Front, Sides, Ends, and Tops	$0.33 \sigma_{\!\scriptscriptstyle M}$
Tank Bulkheads	0.33 σ _u
Watertight Bulkheads	$0.50 \sigma_{u}$

For single skin laminates:

 $\sigma_u = \text{minimum flexural strength, in N/mm}^2 \text{ (kgf/mm}^2, psi)}$

 K_2 = 0,015 para planchas de fondo y costado

= 0,010 para otras planchas.

E_F= Módulo de flexión del laminado.

q1 = 170/F

F= Mínimo esfuerzo de flexión del laminado.

 $c_1 = 5,7 \text{ mm}$

 $k_3 = 1,2$ para el fondo

= 1,0 para el costado y la cubierta.

Espesor del Laminado (Fondo)						
Fórmula	A					
S	500	mm				
С	1					
р	206,375	Kn / m ²				
k	0,308					
Та	56,76					
Tu	172	N /mm ²				
t	16,732	mm				

Proyecto de Embarcación de recreo tipo Open de 18m. L. 7. Cálculo del Escantillonado.

Esp	Espesor del Laminado (Fondo)										
Fór	Fórmula A		Fór	mula B		Fór	mula C				
S	500	mm	S	500	mm	КЗ	1,2				
С	1		С	1		C1	5,7	mm			
р	206,375	Kn /m ²	р	208,995	Kn /m ²	L	14,897	mts			
k	0,308		k1	0,014		q1	0,9883				
Та	56,76		K2	0,015	N /mm ²	F	172	N /mm ²			
Tu	172	N /mm²	Ef	7580	N /mm ²						
					mm						
t	16,732	mm	t	14,761	mm	t	11,420	mm			

Esp	Espesor del laminado (costados)										
Fóri	mula A		Fórmula B			Fórmula C					
S	500	mm	S	500	mm	K3	1				
С	1		С	1		C1	5,7	mm			
р	177,219	Kn /m ²	р	179,632	Kn /m ²	L	14,897	mts			
k	0,308		k1	0,014		q1	0,9883				
Та	56,76		K2	0,015	N /mm ²	F	172	N /mm ²			
Tu	172	N /mm ²	Ef	7580	N /mm ²						
					mm						
t	15,505	mm	t	14,035	mm	t	9,517	mm			

7. Cálculo del Escantillonado.

Esp	Espesor del laminado (Cubiertas)									
Fóri	mula A		Fóri	mula B		Fór	mula C			
S	500	mm	s	500	mm	К3	1			
С	1		С	1		C1	5,7	mm		
р	10,606	Kn /m ²	р	10,606	Kn /m ²	L	15,03	mts		
k	0,308		k1	0,014		q1	0,9883			
Та	56,76		K2	0,01	N /mm ²	F	172	N /mm ²		
Tu	172	N /mm ²	Ef	7580	N /mm ²					
					mm					
t	3,793	mm	t	6,256	mm	t	9,551	mm		

Esp	Espesor del laminado (Mamparo C. Máquinas)										
Fór	mula A		Fóri	mula B		Fór	Fórmula C				
S	500	mm	S	500	mm	К3	1				
С	1		С	1		C1	5,7	mm			
р	27,685	Kn /m ²	р	27,685	Kn /m ²	L	14,897	mts			
k	0,308		k1	0,014		q1	0,988				
Та	56,76		K2	0,015	N /mm ²	F	172	N /mm ²			
Tu	172	N /mm ²	Ef	7580	N /mm ²						
					mm						
t	6,128	mm	t	7,525	mm	t	9,5174	mm			

5.7 Laminados Sándwich.

El laminado sándwich se utilizará para la cubierta principal, y para los laterales y el techo de la superestructura.

Con estas dos fórmulas se calculan los módulos resistentes requeridos por la sociedad de clasificación tanto por el lado exterior, como por el lado interior del laminado. La tercera fórmula indica el valor mínimo del momento de inercia que ha de poseer el laminado.

7. Cálculo del Escantillonado.

$$SM_o = \frac{(sc)^2 pk}{6*10^5 \sigma_{aa}} \text{ cm}^3$$

$$SM_i = \frac{(sc)^2 pk}{6*10^5 \sigma_{ai}} \text{ cm}^3$$

$$I = \frac{(sc)^3 pk_1}{120*10^5 k_2 E_{tc}} \text{ cm}^4$$

Donde:

SM_o= módulo requerido exterior

SM_i= módulo requerido interior.

I= momento de inercia requerido.

 σ_{ao} = Esfuerzo de diseño para el laminado exterior.

 σ_{ai} = Esfuerzo de diseño para el laminado interior.

Cubierta sándwich											
Modulo Exterior			Módulo Interior			Momento de inercia					
S	2000	mm	S	2000	mm	S	2000	mm			
С	1		С	1		С	1				
р	10,5794	Kn /m ²	р	10,5794	Kn /m ²	р	10,5794	Kn /m ²			
k	0,5		k	0,5		k1	0,028				
Tao	40,92	N /mm ²	Tai	38,61	N /mm ²	k2	0,01				
						Etc	6890				
Smo	0,8617	cm ³	Smi	0,9133	cm ³	I	2,86621384	cm ⁴			

Proyecto de Embarcación de recreo tipo Open de 18m. L. 7. Cálculo del Escantillonado.

Sección 4: Refuerzos.

- 3. Fibra Reforzada.
- 3.5 Módulo y momentos de inercia.

long fond	iitudinale: lo	s de			
Mód	lulo		Мо	mento de	Inercia
р	206,375	Kn /m ²	р	208,995	Kn /m ²
S	0,5	m	S	0,5	m
I	0,5	m	I	0,5	m
Та	56,76		K4	0,005	
Tu	172	N /mm ²	Е	6890	N /mm²
SM	37,859	cm ³	I	98,5827	cm ⁴

Tran	Transversales de fondo								
Mód	lulo		Momento de Inercia						
р	208,995	Kn /m ²	р	208,995	Kn /m ²				
S	0,5	m	S	0,5	m				
I	0,5	m	I	0,5	m				
Та	40,92		K4	0,005					
Tu	124	N /mm ²	Е	6890	N /mm ²				
SM	53,181	cm ³	I	98,5827	cm ⁴				

7. Cálculo del Escantillonado.

	Longitudinales de costado									
Mód	lulo		Momento de Inercia							
р	177,220	Kn /m ²	р	177,220	Kn /m ²					
S	0,5	m	S	0,5	m					
I	0,5	m	I	0,5	m					
Та	56,76		K4	0,005						
Tu	172	N /mm ²	Е	6890	N /mm ²					
SM	32,511	cm ³	I	83,5942	cm ⁴					

Tran	sversales	de costado)						
Mód	ulo		Mor	Momento de Inercia					
р	177,220	Kn /m ²	р	177,220	Kn /m ²				
S	0,5	m	s	0,5	m				
I	0,5	m	1	0,5	m				
Та	40,92		K4	0,005					
Tu	124	N /mm ²	Е	6890	N /mm ²				
SM	45,095	cm ³	I	83,5942	cm ⁴				

long	gitudinales	de cubier	ta					
Móa	lulo		Momento de Inercia					
р	10,606	Kn /m ²	р	10,606	Kn /m²			
S	2	m	s	2	m			
I	2	m	I	2	m			
Та	56,76		K4	0,004				
Tu	172	N /mm ²	Е	6890	N /mm ²			
SM	124,521	cm ³	I	1600,91	cm ⁴			

7. Cálculo del Escantillonado.

Tran	sversales (de cubiert	ta					
Mód	ulo		Momento de Inercia					
р	10,606	Kn /m ²	p	10,606	Kn /m ²			
S	2	m	S	2	m			
I	2	m	I	2	m			
Та	40,92		K4	0,004				
Tu	124	N /mm ²	E	6890	N /mm²			
SM	172,723	cm ³	I	1600,91	cm ⁴			

	Cubierta sándwich												
Modulo exterior			Mó	dulo inte	rior	Mon	ento de i	nercia					
S	2000	mm	S	2000	mm	S	2000	mm					
С	1		С	1		С	1						
р	10,579	Kn /m ²	р	10,579	Kn /m ²	р	10,579	Kn /m ²					
k	0,5		k	0,5		k1	0,028						
Tao	40,92	N /mm ²	Tai	38,61	N /mm ²	k2	0,01						
						Etc	6890						
Smo	0,862	cm ³	Smi	0,913	cm ³	I	2,866	cm ⁴					

Costa	do de la	Superesti	ructur	а				
Modu	lo Exteri	or	Mód	ulo Inter	ior	Mon	nento de l	inercia
s	2000	mm	s	2000	mm	S	2000	mm
С	1		С	1		С	1	
р	10,856	Kn /m ²	р	10,856	Kn /m ²	р	10,856	Kn /m²
k	0,5		k	0,5		k1	0,028	
Tao	40,92	N /mm ²	Tai	38,61	N /mm ²	k2	0,025	
						Etc	6890	
Smo	0,884	cm ³	Smi	0,937	cm ³	I	1,176	cm ⁴

Proyecto de Embarcación de recreo tipo Open de 18m. L. 7. Cálculo del Escantillonado.

Tech	o de la S	Superestru	uctura)				
Modulo Exterior		Mód	dulo Inte	erior	Mor	nento de	inercia	
S	2000	mm	s	2000	mm	s	2000	mm
С	1		С	1		С	1	
р	3,930	Kn /m ²	р	3,930	Kn /m ²	р	3,930	Kn /m ²
k	0,5		k	0,5		k1	0,028	
Tao	40,92	N /mm ²	Tai	38,61	N /mm ²	k2	0,025	
						Etc	6890	
Smo	0,320	cm ³	Smi	0,339	cm ³	1	0,426	cm ⁴

Front	al de la S	Superestr	uctura)				
Modulo Exterior		Mód	lulo Inte	rior	Mon	nento de	inercia	
S	2000	mm	S	2000	mm	S	2000	mm
С	1		С	1		С	1	
p	44,468	Kn /m ²	р	44,468		р	44,468	Kn /m ²
k	0,5		k	0,5		k1	0,028	
Tao	40,92	N /mm ²	Tai	38,61	N /mm ²	k2	0,025	
						Etc	6890	
Smo	3,622	cm ³	Smi	3,839	cm ³	I	4,819	cm ⁴

ESCANTILLONADO DE ELEMENTOS.

Con todos los datos obtenidos por la Norma de la sociedad ABS, hay que sacar como conclusión los escantillonados del casco, cubiertas y superestructuras, al igual que el dimensionamiento de los elementos estructurales de las diferentes superficies.

7. Cálculo del Escantillonado.

1. FONDO.

Requisitos básicos:

Espesor mínimo del laminado: 16,73 mm

Módulo de los refuerzos longitudinales: 37,86 cm³.

Momento de inercia de los refuerzos longitudinales: 98,58 cm⁴.

Módulo de los refuerzos transversales: 53,181 cm³.

Momento de inercia de los refuerzos trasversales: 98,58 cm⁴.

Ancho efec	Li.	da Diama	<u> </u>				
Апспо егес	tivo (ie Planc	na				
Espesor Plancha	17	mm					
Altura refuerzo	60	mm					
Ancho base	60	mm					
Ancho arriba	40	mm					
W	366	mm					
Espesor refuerzo	8	mm					
	Anc		dist.				
	ho	Area	Eje refer	AxY	A x Y ²	ip	
Area pl. asoc	17	62,22	0,85	52,887	44,954	1,498	
Area 1	50	8	2,1	16,8	35,28	0,0213	
Area 2	60	9,6	5,5	52,8	290,4	1,44	
Area 3	40	3,2	8,1	25,92	209,952	0,0171	
					580,58		
		83,02		148,407	6	2,977	
Eje neutro		1,788	ст				
Momento				Mom.		Mom. Requ.	
de Inercia	ib	583,563	cm ⁴	Requ.long		Trans	
	In	318,270	cm ⁴	98,583	cm ⁴	98,583	cm ⁴
Modulo				Mod. Requ.		Mod. Requ.	
resistente	Wf	178,042	cm³	Long		Trans	
	Ws	72,072	cm³	38,340	Cm ³	53,181	cm ³

7. Cálculo del Escantillonado.

Para no diversificar los diferentes tipos de refuerzos, y como los módulos y momentos que son necesarios en las diferentes zonas de la embarcación, los longitudinales y trasversales de una misma zona, serán siempre iguales, por tanto, en el fondo del casco, las características finales son:

Espesor del laminado: 17mm

Altura del refuerzo: 60mm

Ancho del refuerzo (base, cima): 60, 40mm

Espesor del laminado del refuerzo: 8mm

Ancho de la plancha asociada: 366mm

2. COSTADOS.

Requisitos básicos:

Espesor mínimo del laminado: 15,5 mm

Módulo de los refuerzos longitudinales: 32,51 cm³.

Momento de inercia de los refuerzos longitudinales: 83,59 cm⁴.

Módulo de los refuerzos transversales: 45,095 cm³.

Momento de inercia de los refuerzos trasversales: 83,59 cm⁴.

7. Cálculo del Escantillonado.

Longitudina	les y tr	ansve	rsales	del Costad	0		
Ancho efecti	ivo de	Planch	ıa				
Espesor Plancha	16	mm					
Altura refuerzo	50	mm					
Ancho base	50	mm					
Ancho arriba	30	mm					
w	338	mm					
Espesor refuerzo	8	mm					
			dist.				
	Longit		<i>Ej</i> e				
	ud	Area	refer	AxY	A x Y ²	ip	
Area pl. asoc	16	54,08	0,8	43,264	34,611	1,154	
Area 1	50	8	2	16	32	0,0213	
Area 2	50	8	4,9	39,2	192,08	0,83333333	
Area 3	30	2,4	7	16,8	117,6	0,0128	
					376,2		
		72,48	14,7	115,264	91	2,021	
Eje neutro		1,590	ст				
Momento de		378,3		Mom. Requ.		Mom. Requ.	
Inercia	ib	12	Cm⁴	long		Trans	
	In	195,0 10	Cm⁴	84,732	cm ⁴	84,732	Cm ⁴
Modulo		122,6		Mod. Requ.		Mod. Requ.	
resistente	Wf	25	Cm³	Long		Trans	
	Ws	44,16 0	Cm³	32,953	Cm ³	45,709	cm ³

7. Cálculo del Escantillonado.

Espesor del laminado: 16mm

Altura del refuerzo: 50mm

Ancho del refuerzo (base, cima): 50, 30mm

Espesor del laminado del refuerzo: 8mm

Ancho de la plancha asociada: 338mm

3. CUBIERTA SANDWICH.

Requisitos básicos:

Módulo del laminado exterior: 0,862 cm³.

Módulo del laminado interior: 0,913 cm³.

Momento de inercia del laminado sándwich: 2,866 cm⁴.

Espesor mínimo del núcleo: 0,97mm

Módulo de los refuerzos longitudinales: 124,521 cm³.

Momento de inercia de los refuerzos longitudinales: 1600,91 cm⁴.

Módulo de los refuerzos transversales: 172,726 cm³.

Momento de inercia de los refuerzos trasversales: 1600,91 cm⁴.

7. Cálculo del Escantillonado.

Cubierta	Sándwic	:h					
	Longitud	Espesor	Area	Dist a Refer	AxY	A x Y ²	ip
Laminado							
superior	1	0,5	0,5	3,75	1,875	7,03125	0,010
Nucleo	1	3	3	2	6	12	2,25
Laminado							
inferior	1	0,5	0,5	0,25	0,125	0,03125	0,010
			4		8	19,0625	2,271
<i>Eje</i>							
neutro		2,000	ст				
				Momento Requerido			
Momento de							
Inercia	ib	21,333	Cm⁴	2,866	Cm ⁴		
	In	5,333	Cm⁴				
				Modulo			
				Requerido			
Modulo							
resistente	Wf	2,667	Cm ³	0,862	Cm ³		
	Ws	1,208	cm ³	0,913	Cm ³		

7. Cálculo del Escantillonado.

Longitudinales y	Transve	rsales de	cubierta			
Ancho efectivo						
de Plancha						
Espesor Plancha	14	mm				
Altura refuerzo	120	mm				
Ancho base	90	mm				
Ancho arriba	70	mm				
w	342	mm				
Espesor refuerzo	10	mm				
			dist. Eje			
	Ancho	Area	refer	AXY	A x Y ²	ip
Area pl. asoc	14	47,88	0,7	33,516	23,461	0,782
Area 1	50	10	1,9	19	36,1	0,0417
Area 2	120	24	8,4	201,6	1693,44	14,4
Area 3	70	7	13,9	97,3	1352,47	0,0583
		88,88		351,416	3105,471	15,282
Eje neutro		3,954	ст			
Momento de		3120,7			Momento	
Inercia	ib		Cm ⁴		Requerido	
		1731,3				_
	In	16	Cm⁴		1596,890	cm ⁴
Modulo		437,88			Modulo	
resistente	Wf	4	Cm³		Requerido	
		392,05				- 3
	Ws	5	Cm ³		172,290	Cm³

7. Cálculo del Escantillonado.

Espesor Total del sándwich: 40mm

Espesor del laminado exterior: 5mm

Espesor del núcleo de PVC: 30mm

Espesor del laminado interior: 5mm

Espesor de plancha asociada: 14mm

Altura del refuerzo: 120mm

Ancho del refuerzo (base, cima): 90, 70mm

Espesor del laminado del refuerzo: 10mm

Ancho de la plancha asociada: 342mm

4. SUPERESTRUCTURA.

Requisitos básicos:

Módulo del laminado lateral exterior: 0,884 cm³.

Módulo del laminado lateral interior: 0,937 cm³.

Momento de inercia del laminado sándwich lateral: 1,176 cm⁴.

Módulo del laminado del techo exterior: 0,320 cm³.

Módulo del laminado del techo interior: 0,339 cm³.

Momento de inercia del laminado sándwich del techo: 1,176 cm⁴.

Módulo del laminado frontal exterior: 3,622 cm³.

Módulo del laminado frontal interior: 3,839 cm³.

Momento de inercia del laminado sándwich frontal 4,819 cm⁴

7. Cálculo del Escantillonado.

Lateral de la Super	restructura						
	Longitud	Espesor	Área	Dist a Refer	AxY	A x Y ²	ip
Laminado superior	1	0,4	0,4	3,6	1,44	5,184	0,005
Núcleo	1	3	3	1,9	5,7	10,83	2,25
Laminado inferior	1	0,4	0,4	0,2	0,08	0,016	0,005
			3,8		7,22	16,03	2,261
Eje neutro		1,900	ст	Momento			
				Requerido			
Momento de							
Inercia	ib	18,291	Cm⁴	1,174	Cm ⁴		
	In	4,573	Cm⁴				
				Modulo			
				Requerido			
Modulo resistente	Wf	2,407	Cm ³	0,882	Cm ³		
	Ws	1,035	Cm ³	0,935	Cm ³		

7. Cálculo del Escantillonado.

Techo de la Su	perestr	uctura					
	Longitud	Espesor	Área	Dist a Refer	AxY	A x Y ²	ip
Laminado superior	1	0,4	0,4	2,6	1,04	2,704	0,005
Núcleo	1	2	2	1,4	2,8	3,92	0,6666
Laminado inferior	1	0,4	0,4	0,2	0,08	0,016	0,005
			2,8		3,92	6,64	0,677
Eje neutro		1,400	ст				
				Momento			
				Requerido			
Momento de							
Inercia	ib	7,317	Cm⁴	0,426	Cm ⁴		
	In	1,829	Cm ⁴				
				Modulo Requerido			
Modulo							
resistente	Wf	1,307	Cm³	0,320	Cm ³		
	Ws	0,414	cm³	0,339	cm ³		

7. Cálculo del Escantillonado.

RESUMEN FINAL.

Espesores de Planchas:

- Fondo=17mm
- Costados= 16mm
- Quilla = $1.5 \times Fondo = 25.5 mm$
- Codillo= 1,5 x Fondo= 25,5mm
- Espejo de Popa= 2,0 x Fondo = 34mm
- Espesor de los mamparos= 10mm
- Espesor de cubierta sándwich= 40mm
- Espesor del costado de la superestructura= 38mm
- Espesor del techo de la superestructura= 28mm

Refuerzos:

- Dimensiones de los refuerzos longitudinales y trasversales del fondo (alto x ancho abajo x ancho arriba)= 60x60x40.
- Espesor del refuerzo= 8mm
- Dimensiones de los refuerzos longitudinales y trasversales del costado (alto x ancho abajo x ancho arriba)= 50x50x30.
- Espesor del refuerzo= 8mm
- Dimensiones de los refuerzos longitudinales y trasversales de cubierta (alto x ancho abajo x ancho arriba)= 120x90x70.
- Espesor del refuerzo= 10mm
- Dimensiones de los refuerzos verticales y horizontales del espejo de popa (alto x ancho abajo x ancho arriba)= 60x60x40.
- Espesor del refuerzo= 8mm
- Dimensiones de los refuerzos verticales y horizontales de los mamparos de máquinas y proa (alto x ancho abajo x ancho arriba)= 60x60x40.
- Espesor del refuerzo= 8mm

Proyecto de Embarcación de recreo tipo Open de 18m. L. 7. Cálculo del Escantillonado.

- Ancho de quilla= 431mm
- Ancho del codillo= ancho de este + 50mm a ambos lados.

Para finalizar esta sección se adjuntan los siguientes planos a escala 1:110 en formato A4. Los mismos se encuentran en el anexo final en formato A3 a escala 1:75.

- Plano de la Estructura del casco.
- Plano de la Estructura de la cubierta.
- Plano de la Estructura de la Superestructura.

<u>Sección 8.</u> <u>Estudio de Pesos y C.D.G.</u>

Proyecto de Embarcación de recreo tipo Open de 18m. L. 8. Estudio de Pesos y C.D.G.

8. ESTUDIO DE PESOS Y C.D.G.

El objetivo de este punto es obtener mediante el desglose del peso y la localización de todos los elementos de la embarcación, obtener el peso total de esta y su centro de gravedad.

Para ello primero hay que separa los numerosos elementos en diferentes categorías o grupos, reuniéndolos en 13 grupos diferentes, de los cuales se obtiene el peso del grupo y su centro de gravedad, con lo cual obtenemos en el resumen final el peso total de la embarcación en rosca y su centro de gravedad.

Para la localización de los pesos situamos el punto 0, 0, 0, desde el cual se realizarán todas las mediciones en la línea base, en la perpendicular de popa.

Grupo 1		E	structu	ıra			
Elemento	Peso	Lcg	Vcg	Тсд	Momento X	Momento Y	Momento Z
Quilla	312,991	9,37	0,534	0	2932,726	167,137	0,000
Fondo	1234,549	7,784	0,574	0	9609,729	708,631	0,000
Codillo	419,457	7,391	0,811	0	3100,207	340,180	0,000
Costados	1468,0615	8,674	1,913	0	12733,966	2808,402	0,000
Refuerzos Long. De Fondo	277,7837	7,583	0,364	0	2106,434	101,113	0,000
Refuerzos Trans de Fondo	365,7	7,764	0,632	0	2839,295	231,122	0,000
Refuerzos Long. De Costado	309,8640	7,71	1,84	0	2389,051	570,150	0,000
Refuerzos Trans. De Costado	204,09	7,835	1,968	0	1599,045	401,649	0,000
Cubierta del Cockpit	283,474	6,516	2,83	0	1847,117	802,231	0,000
Ref. Trans. Cubierta Cockpit	101,3602	6,5	2,862	0	658,842	290,093	0,000
Ref. Long. Cubierta Cockpit	144,004	6,122	2,862	0	881,592	412,139	0,000
Plancha Asoc. Cub. Cockpit	131,3294	7,084	2,893	0	930,338	379,936	0,000
Cubierta Trasera Abierta	95,27	3,5	2,36	0	333,445	224,837	0,000
Ref. Trans. Cubierta Trasera	63,644	3,5	2,362	0	222,754	150,327	0,000
Ref. Long. Cubierta Trasera	20,186	3,675	2,362	0	74,184	47,679	0,000
Plancha Asoc. Cub. Trasera	39,316	3,6	2,393	0	141,538	94,083	0,000
Escaleras Tras. Y plataforma	141,024	0,797	1,58	0	112,396	222,818	0,000
Pasillos de Cubierta	254,021	11,618	3,058	0	2951,216	776,796	0,000
Solarium de Proa	553,590	13,191	3,637	0	7302,406	2013,407	0,000
Lateral de la Superestructura	239,453	6,365	3,373	0	1524,118	807,675	0,000
Techo de la Superestructura	283,959	5,127	4,945	0	1455,858	1404,177	0,000
Espejo de Popa	176,036	0	0,738	0	0,000	129,915	0,000
Ref. Verticales Popa	25,100	0	0,74	0	0,000	18,574	0,000
Ref. Horizontales Popa	59,4975	0	0,54	0	0,000	32,129	0,000
Mamparo C. Máquinas	304,1560	5,5	1,6369	0	1672,858	497,871	0,000
Mamparo de Proa	106,8145	16	2,5125	0	1709,032	40,200	0,000
Cubierta de Proa	494,1773	13,191	3,25	0	6518,693	42,871	0,000
Ref. trans. Cubierta de Proa	289,2900	12,5	3,25	0	3616,125	40,625	0,000
Ref. Long. Cubierta de Proa	188,6200	12,95	3,25	0	2442,629	42,088	0,000
Area plancha asoci. Cub. Proa	188,6550	13,191	3,25	0	2488,548	42,871	0,000
Cubierta habilitación Interior	450,0000	9,23	0,895	0	29,998	2,909	0,000
	9225	8,0456	1,5007	0,0000	74224,137	13844,635	0,000

Grupo 2							
Elemento	Peso	Lcg	Vcg	Тсд	Momento X	Momento Y	Momento Z
Gel Coat Casco	213,0744	8,0929	1,2545	0,0000	1724,394	267,298	
Gel Coat Cubierta	99,8914	8,866	2,978	0	885,615	297,521	
Gel coat Superestructura	42,98	5,85	4,575	0	251,433	196,634	
					0,000	0,000	
	355,9	8,0390	2,1392	0,0000	2861,443	761,453	0,000

Proyecto de Embarcación de recreo tipo Open de 18m. L. 8. Estudio de Pesos y C.D.G.

Grupo 3			Tec	a			
Elemento	Peso	Lcg	Vcg	Tcg	Momento X	Momento Y	Momento Z
Teca en Cub. Cockpit	179,6	6,516	2,83		1170,274	508,268	0,000
Teca en Cub. Popa	66,3	3,15	2,394		208,845	158,722	0,000
Teca en Plataforma de Popa	28,8	-0,503	1,275	0	-14,486	36,720	0,000
Teca en pasillos de Proa	128,25	11,618	3,058	0	1490,009	392,189	0,000
teca en escaleras de popa	71,2	0,797	1,58	0	56,746	112,496	0,000
	474,2	6,1402	2,5485	0,0000	2911,387	1208,395	0,000

Grupo 4		Inoxi	dables	y Venta	anas		
Elamanta	Daga		Von	T	Momento	Momento	Momento
Elemento	Peso	Lcg	Vcg	Tcg	X	Y	Z
Pasamanos de Cubierta	61,35	11,59	3,475	0	711,047	213,191	0,000
	•	•	,		•	,	•
Bitas de Proa	15	17,465	3,245	0	261,975	48,675	0,000
Guiacabos de Proa	10	17,55	3,245	0	175,500	32,450	0,000
Bitas de Popa	15	1,075	2,02	0	16,125	30,300	0,000
Guiacabos de Popa	10	1,06	2,02	0	10,600	20,200	0,000
Portillo aseo trasero	10	7,156	2,5	-2,49	71,560	25,000	-24,900
Portillo aseo central	10	11,05	2,5	2,49	110,500	25,000	24,900
Portillo aseo Proa	10	12,2	2,75	2,49	122,000	27,500	24,900
Portillo camarote trasero	10	6,018	2,5	2,49	60,180	25,000	24,900
Portillo camarote central	10	8,56	2,5	2,49	85,600	25,000	24,900
Portillo camarote Proa	10	14,062	2,75	-2,273	140,620	27,500	-22,730
Ventana salon Cristal delantero	30	10,98	2,5	-2,49	329,400	75,000	-74,700
superestructura Ventanas laterales	270	8,79	4,2	0	2373,300	1134,000	0,000
superestruct.	154	6,83	3,98	0	1051,820	612,920	0,000
	625,4	8,827	3,7127	-0,04	5520,227	2321,736	-22,730

Grupo 5			Habilita	ación			
Elemento	Peso	Lcg	Vcg	Тсд	Momento X	Momento Y	Momento Z
Camarote de Popa	644,7	6,923	1,77	0,669	4463,258	1141,119	431,304
Aseo de Camarote de Popa	212	6,597	1,77	-1,736	1398,564	375,240	-368,032
Camarote Central	352,1	9,489	1,77	1,378	3341,077	623,217	485,194
Aseo de Camarote Central	102	11,128	1,92	1,353	1135,056	195,840	138,006
Camarote de Proa	434,4	13,738	2,27	0	5967,787	986,088	0,000
Aseo de Camarote de Proa	103,95	12,156	2,27	1,145	1263,616	235,967	119,023
Cocina	264	8,788	1,77	-1,776	2320,032	467,280	-468,864
Salón	225	11,065	1,77	-1,425	2489,625	398,250	-320,625
Distribuidor + Escalera	465	9,497	1,770	-0,330	4416,115	823,050	-153,556
Cockpit	538,8	6,625	3,77	0	3569,550	2031,276	0,000
	3342	9,0859	2,1776	-0,041	30364,680	7277,327	-137,550

Grupo 6			niento			_	
Elemento	Peso	Lcg	Vcg	Tcg	Momento X	Momento Y	Momento Z
Aislamiento General	300	7,25	2,65	0	2175,000	795,000	0,000
Aislamiento C. Máquinas	150	4,6	1,65	0	690,000	247,500	0,000
	450	6,3667	2,3167	0,0000	2865,000	1042,500	0,000

Grupo 7		Motore					
Elemento	Peso	Lcg	Vcg	Тсд	Momento X	Momento Y	Momento Z
Motores Principales	3930	3,07	1,15	0	12065,100	4519,500	0,000
Reductoras	200	2,025	0,85	0	405,000	170,000	0,000
Líneas de Eje	200	1,2	0,8	0	240,000	160,000	0,000
Hélices de Superficie	846	-0,82	0,48	0	-693,720	406,080	0,000
	5176	2,3216	1,0154	0,0000	12016,380	5255,580	0,000

Grupo 8		Cán	nara de				
Elemento	Peso	Lcg	Vcg	Тсд	Momento X	Momento Y	Momento Z
Generador de corriente	465	1,25	1,35	-1,72	581,250	627,750	-799,800
Grupo de presión	80	3,59	1,45	2,12	287,200	116,000	169,600
Depósito de combustible	340	4,915	0,95	0	1671,100	323,000	0,000
Filtros de Combustible	10	4,6	0,595	0	46,000	5,950	0,000
Compresor de A/A	180	1,25	1,35	1,831	225,000	243,000	329,580
Deposito de agua dulce	85	4,915	1,65	0	417,775	140,250	0,000
Calentador Agua Dulce	250	4,1	1,5	1,964	1025,000	375,000	491,000
Filtros de Agua	10	4,6	1,565	0	46,000	15,650	0,000
Sistema de aguas grises	50	3,58	1,35	-1,972	179,000	67,500	-98,600
Sistema de aguas negras	50	4,321	1,35	-1,972	216,050	67,500	-98,600
Sist. Ventilacion	30	4,97	2,5	0	149,100	75,000	0,000
Piso de C. máquinas	120	2,555	0,59	0	306,600	70,800	0,000
	1670	3,0839	1,2739	-0,0041	5150,075	2127,400	-6,820

Grupo 9	Ins						
Elemento	Peso	Lcg	Vcg	Tcg	Momento X	Momento Y	Momento Z
Baterias	150	3,265	1,6	-1,18	489,750	240,000	-177,000
Transformadores	35	3,265	1,7	0	114,275	59,500	0,000
Cuadro de distribucion	25	8,397	1,75	-0,743	209,925	43,750	-18,575
Cableado y cajas	150	9,02	3	0	1353,000	450,000	0,000
Luces	70	9,02	3	0	631,400	210,000	0,000
Antenas	150	4,1	5,15	0	615,000	772,500	0,000
	580	5,8851	3,0616	-0,337	3413,350	1775,750	-195,575

Grupo 10			Gara				
Elemento	Peso	Lcg	Vcg	Тсд	Momento X	Momento Y	Momento Z
Suelo garaje trasero	200	1,5	1,578	0	300,000	315,600	0,000
Grua garaje trasero	150	3,3	2,2	0	495,000	330,000	0,000
Grua garaje de Cubierta	285	10,93	3,135	0,945	3115,050	893,475	269,325
Pasarela de popa	189	2,51	1,975	-1,742	474,390	373,275	-329,238
Porton de popa	80	0,816	2,317	0	65,280	185,360	0,000
Porton de proa	40	12,337	3,885	0	493,480	155,400	0,000
Auxiliar + fueraborda	175	12,337	3,518	0	2158,975	615,650	0,000
Moto de agua	250	1,51	1,85	0	377,500	462,500	0,000
	1369	5,4636	2,4334	-0,044	7479,675	3331,260	-59,913

Grupo 11			Fond	ndeo					
Elemento	Peso	Lcg	Vcg	Тсд	Momento X	Momento Y	Momento Z		
Ancla	50	18,332	3,243	0	916,600	162,150	0,000		
Cadenas	100	17,56	3,25	0	1756,000	325,000	0,000		
Molinetes	150	16,866	2,65	0	2529,900	397,500	0,000		
	300	17,3417	2,9488	0,0000	5202,500	884,650	0,000		

Grupo 12 Seguridad							
Elemento	Peso	Lcg	Vcg	Tcg	Momento X	Momento Y	Momento Z
Balsa salvavidas	350	3,75	2,575	1,45	1312,500	901,250	507,500
Chalecos	80	6,125	3,125	-1,85	490,000	250,000	-148,000
Aro salvavidas	30	3,75	2,575	-1,45	112,500	77,250	-43,500
	460	4,1630	2,6707	0,6870	1915,000	1228,500	316,000

Grupo 13	Equipos Contraincendios						
Elemento	Peso	Lcg	Vcg	Tcg	Momento X	Momento Y	Momento Z
Extintores de habilitación	50	9,13	1,5	0	456,500	75,000	0,000
Extintores C. máquinas	50	1,923	1,5	2,15	96,150	75,000	107,500
	100	5,5265	1,5000	1,0750	552,650	150,000	107,500

Proyecto de Embarcación de recreo tipo Open de 18m. L. 8. Estudio de Pesos y C.D.G.

Resumen de Pesos y Centro de Gravedad.

		24127,869	6,343	1,668	0,0000
Grupo 13	Equipos Contraincendios	100	5,5265	1,5	1,075
Grupo 12	Seguridad	460	4,1630	2,6707	0,6870
Grupo 11	Fondeo	300	17,3417	2,9488	0
Grupo 10	Garajes	1369	5,4636	2,4334	-0,0438
Grupo 9	Instalación Electrica y Electrónica	580	5,8851	3,0616	-0,3372
Grupo 8	Cámara de Máquinas	1670	3,0839	1,2739	-0,0041
Grupo 7	Motores y Equ. Propulsion	5176	2,3216	1,0154	0
Grupo 6	Aislamiento	450	6,3667	2,3167	0
Grupo 5	Habilitación	3341,95	9,0859	2,1776	-0,0412
Grupo 4	Inoxidables y Ventanas	625,35	8,8297	3,7127	-0,1129
Grupo 3	Teca	474,15	6,1402	2,5485	0
Grupo 2	Pinturas	355,9458	8,0390	2,1392	0
Grupo 1	Estructura	9225,4730	8,0456	1,5007	0

Como conclusión final se obtiene un peso en rosca final de 24,128 toneladas, y el centro de gravedad de la embarcación se sitúa a 6,343 m de la perpendicular de popa y a una altura de 1,668m de la línea base.

Sección 9. Cálculo de la Resistencia en Planeo.

9. CÁLCULO DE LA RESISTENCIA EN PLANEO.

Tras concluir el diseño de la carena, obtener unos escantillonados conformes a la reglamentación indicada y obtener el desplazamiento y centro de gravedad de la embarcación, hay que llevar a cabo el cálculo de la resistencia en planeo.

Anteriormente ya se hizo un cálculo estimado de resistencia en planeo de la carena, pero no se tenían un desplazamiento total, ni un centro de gravedad real, solo eran estimaciones.

Para calcular la resistencia en planeo se utilizara como primer método, el mismo usado en el apartado a del proyecto (Diseño de la Carena), el método de Savistky-Hadler.

Como segundo método usaremos el programa Hullspeed, del grupo de programas de Maxsurf 9.32.

1. Método de Savistky-Hadler.

Como el desarrollo del método está ya explicado anteriormente, aquí solo se incluirán los datos de partida, que varían con respecto a las estimaciones realizadas anteriormente, ya que antes se hizo con una estimación pesos a media carga, y aquí se realiza a máxima carga, con el peso ya calculado.

<u>Proyecto de Embarcación de recreo tipo Open de 18m. L.</u> <u>9. Cálculo de la Resistencia en Planeo.</u>

Datos de Partida:

Símbolos	Parámetros	Valores
М	Desplazamiento	29273 Kg.
LCG	Distancia Longitudinal de popa al c.d.g.	6,211 m.
VCG	Distancia Vertical desde la línea base al c.d.g. (KG)	1,608 m.
b	Manga Máxima entre pantoques	4,32 m.
ε	Inclinación del eje relativa a la línea base	50
β	Angulo de astilla muerta (valor medio entre popa y la sección en c.d.g.)	18,910
f	Distancia entre el eje y el c.d.g.	0,65 m.
V	Velocidad	45 Kn.

9. Cálculo de la Resistencia en Planeo.

Resultados Finales.

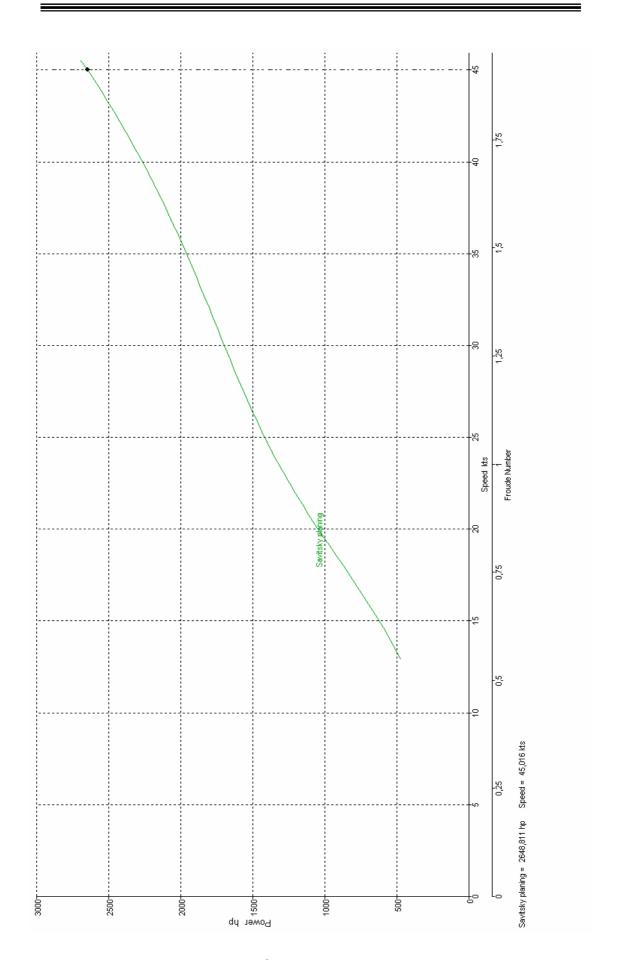
		Trimado 1º	Trimado 2º	Trimado de Equilibrio
2	Cv	3,556	3,556	
3	CLB (1)	0,0560	0,0560	
	CLB (2)	0,0560	0,0560	
4	CLo (1)	0,0838	0,0838	
	CLo (2)	0,0838	0,0838	
5	Trimado	4	3	
6	Lambda	1,834	2,71	
7	Lm	7,923	11,707	
	Rn	1,554*10 ⁸	2,297*10 ⁸	
8	Cf	0,0020	0,019	
9	Increm. lambda	0,35	0,45	
	Rf	23,174	31,766	
10	ff	1,24	1,24	
13	Lcp	5,581	7,749	
	е	0,629	-1,539	
14	Mh	166,111	-449,112	
	Mf	12,766	12,018	
15	М	178,877	-437,094	
17	Trimado medio			3,710
18	Rfo			25,669
19	R			43,905
20	Pe			1056,25
	Rendimiento			0,5
21	Pd			2112,5

Como resultado final se obtiene una potencia final de 2112,5 CV.

9. Cálculo de la Resistencia en Planeo.

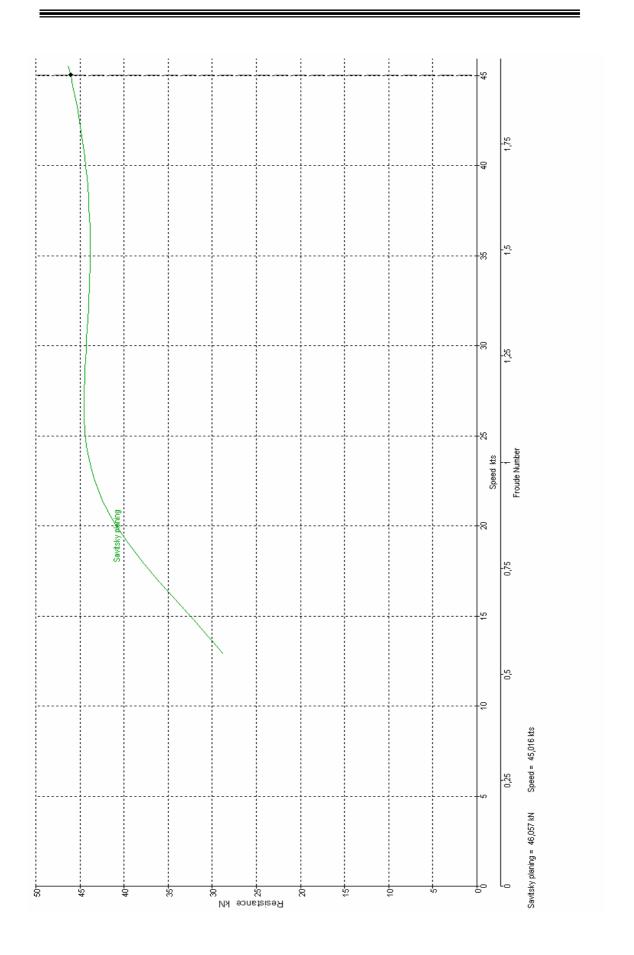
2. Hullspeed.

Como segundo método, se usa el programa Hullspeed, al cual se le introducen las formas de la embarcación provenientes de Maxsurf, y se ponen en la condición de carga máxima.


La velocidad máxima de la embarcación se fijará al igual que en el método anterior en 45 nudos, el rendimiento propulsivo en el 50% y el centro de gravedad se traslada al punto real.

	Valor	Unidad	Savistky
LWL	14,958	m	14,958
Beam	4,467	m	4,467
Draft	0,908	m	
Displaced volume	28,542	m^3	28,542
Wetted area	66,39	m^2	
Prismatic coeff.	0,745		
Waterplane area coeff.	0,827		
1/2 angle of entrance	27,15	deg.	
LCG from midships(+ve for'd)	-1,268	m	-1,268
Transom area	2,561	m^2	
Max sectional area	2,561	m^2	
Bulb transverse area	0	m^2	
Bulb height from keel	0	m	
Draft at FP	0,908	m	
Deadrise at 50% LWL	18,96	deg.	18,96
Hard chine or Round bilge	Hard chine		
Frontal Area	0	m^2	
Headwind	0	kts	
Drag Coefficient	0		
Air density	0,001	tonne/m^3	
Appendage Area	0	m^2	
Nominal App. length	0	m	
Appendage Factor	1		
Correlation allow.	0,0004		
Kinematic viscosity	1,188E-06	m^2/s	
Water Density		tonne/m^3	

9. Cálculo de la Resistencia en Planeo.


Velocidad	Resistencia (kN)	Potencia (hp)
0		
1,13		
2,25		
3,37		
4,5		
5,62		
6,75		
7,87		
9		
10,12		
11,25		
12,38		
13,5	29,79	513,83
14,63	31,81	594,33
15,75	33,88	681,77
16,88	35,94	774,93
18	37,91	871,8
19,12	39,69	969,79
20,25	41,21	1066,17
21,38	42,43	1158,6
22,5	43,33	1245,57
23,62	43,95	1326,46
24,75	44,32	1401,39
25,87	44,5	1471,02
27	44,54	1536,29
28,13	44,48	1598,25
29,25	44,37	1657,95
30,37	44,23	1716,37
31,5	44,09	1774,4
32,63	43,97	1832,83
33,75	43,89	1892,35
34,87	43,85	1953,54
36	43,85	2016,94
37,12	43,92	2082,98
38,25	44,04	2152,07
39,38	44,22	2224,55
40,5	44,47	2300,73
41,62	44,77	2380,87
42,75	45,14	2465,22
43,87	45,56	2554
45	46,05	2647,39

9. Cálculo de la Resistencia en Planeo.

Pág. 108 (170)

9. Cálculo de la Resistencia en Planeo.

Pág. 109 (170)

<u>Sección 10.</u> <u>Motorización y Propulsión.</u>

10. MOTORIZACIÓN Y PROPULSIÓN.

Para el cálculo de la motorización se usa el valor de potencia mas elevado, que en este caso es el obtenido por el programa Hullspeed. Según este programa, para impulsar la embarcación hasta 45 nudos a plena carga son necesarios 2647 caballos.

Comparando con las embarcaciones existentes y previamente estudiadas en la comparativa realizada en el punto 2 del proyecto, y analizando las más cercanas el desplazamiento máximo y potencia instalada, parece que la estimación de potencia está rondando la media de las existentes, ya que los modelos Alfamarine 60, Sinergia 67 y AB 68 tienen un peso muy similar a la aquí realizada e instalando una potencia superior, 2 * 1550 en todos los casos, 3100 caballos en total, consiguen una velocidad de entre 48 y 50 nudos, algo superiores, pero que consiguen en unas condiciones de carga inferiores, normalmente 1/3 de carga. Por otro lado el modelo Cantieri di Sarnico 65, el cual tiene un desplazamiento ligeramente superior y declara una potencia similar, 2720 caballos, tiene una punta de 39 nudos.

Ya que la potencia parece que está en un valor coherente comparándola con la competencia, hay que buscar unos motores en el mercado que se adapten a esta potencia. Una vez más acudiendo a la competencia se observa a primera vista que normalmente se trabajan en este rango de potencia con tres marcas diferentes: Caterpillar, MTU y MAN.

De las tres, la más usada es la tercera, MAN, y comparando los diferentes modelos de las tres casas, se comprueba que todos son motores con una alta tecnología heredada de la automoción y que alcanzar unos rendimientos espectaculares, en este sentido los motores más "exprimidos" son los MAN, que son los de menor cilindrada y que consiguen el mismo rendimiento que los de las otras dos marcas. Esto trae como consecuencia que los motores pesen bastante menos que los de la competencia, el problema estaria en la durabilidad de estos, pero eso no es inconveniente ya que este tipo de motor funciona muy pocas horas al año en comparación con un motor de una embarcación de trabajo.

Adentrados en la gama de productos MAN, en el apartado de servicio ligero, es decir, para embarcaciones rápidas y de un uso no intensivo en cuanto a horas de funcionamiento al año, se encuentran con tres motores que rondan la potencia requerida, estos son:

- Man D 2842 LE 404.
- Man V12-1360.
- Man V12-1550.

Leichter Betrieb⁶⁾ - Light duty⁶⁾ - Service léger⁶⁾

D 0836 LE 401 ^{EBC}	6 R	331 (450)	3	2600	235 93	108/125 6.87	1127	740	925	590	730	IMO, ZKR1
D 2876 LE 404E00	6 R	463 (630)	-	2200	220 121	128/166 12.82	1320	882	966	665	1290	IM0
R 6-730 ⁶⁾	6 R	537 (730)	70	2300	225 145	128/166 12.82	1320	882	978	665	1305	IMO, SAV, EPA TIER 2, RCD 94/25/EC
R 6-800 ⁶	6 R	588 (800)	*	2300	225 158	128/166 12.82	1320	882	978	665	1305	IMO, SAV, EPA TIER 2, RCD 94/25/EC
D 2848 LE 403	8 V	588 (800)	☑ 31	2300	225 158	128/142 14.62	1176	1230	1063	685	1390	IMO
V 8-900 ⁶⁾	8 V	662 (900)	*	2300	227 179	128/142 14.62	1176	1230	1120	730	1565	IMO, SAV, EPA TIER 2, RCD 94/25/EC
V 10-1100 ⁶	10 V	809 (1100)	7	2300	225 217	128/142 18.27	1334	1230	1183	730	1855	IMO, SAV, EPA TIER 2, RCD 94/25/EC
V 12-1224 ⁶	12 V	900 (1224)	=	2300	217 233	128/142 21.93	1491	1230	1185	730	1965	IMO, EPA TIER 2, RCD 94/25/EC
D 2842 LE 404 ^{EDG}	12 V	956 (1300)		2300	225 256	128/142 21.93	1491	1230	1105	685	1860	IM0
V 12-1360 ⁶⁾	12 V	1000 (1360)	-	2300	222 264	128/142 21.93	1491	1230	1185	730	1965	IMO, EPA TIER 2, RCD 94/25/EC
V 12-1550 ⁶⁾	12 V	1140 (1550)	+	2300	226 307	128/142 21.93	1491	1380	1270	800	2165	IMO, EPA TIER 2, RCD 94/25/EC

Analizando en profundidad los tres modelos, el primero se queda algo escaso de potencia total, ya que da 1300 hp y al ser dos motores, serian 2600 hp, serian algo escasos, pero es un motor que aunque comparte cotas externas e internas con los otros dos, es de inyección directa diesel, tiene un consumo y un peso inferiores a sus hermanos de gama, es un motor antiguo, ya que únicamente cumple la reglamentación IMO de emisión de gases.

El tercer motor, siendo el mismo que los anteriores tiene una potencia total de 1550 hp, lo que dá una potencia conjunta de 3100 hp. Excesivos para esta embarcación.

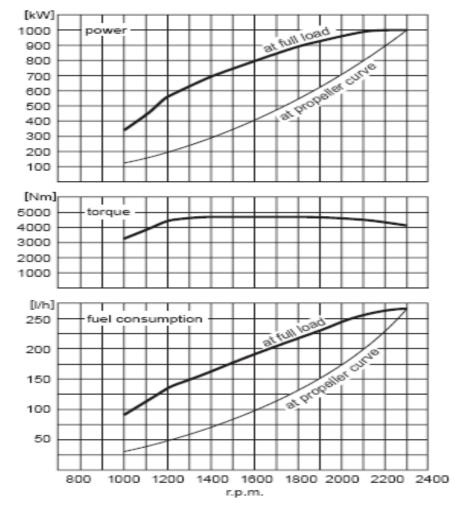
El motor intermedio, Man V12-1360 es el elegido para motorizar la embarcación, ya que es la que más cerca se queda su potencia conjunta total a la obtenida en el estudio de resistencia en planeo, 2720hp – 2647 hp = 73 hp de más. Tiene un consumo y un peso muy parecido al de potencia inferior, es un motor de ultima generación con inyección directa common-rail, y que cumple con las

10. Motorización y Propulsión.

normativas de emisión de gases **IMO**, **EPA TIER 2** y **RCD 94/25/EC**.

En la segunda columna de la siguiente gráfica se pueden ver las características técnicas de este motor.

Technical data:


Engine model	V12-1224 Common Rail	V12-1360 Common Rail
Bore	128 mm	128 mm
Stroke	142 mm	142 mm
Displacement	21.931	21.931
Compression ratio	15.5:1	15.5:1
Rotation looking on flywheel	left	left
Flywheel housing	SAE 1	SAE 1
Nominal output (light duty operation)*	900 kW (1224 hp)	1000 kW (1360 hp)
Rated speed	2,300 rpm	2,300 rpm
Torque at rated speed	3,737 Nm	4,152 Nm
Mean effective pressure	21.4 bar	23.8 bar
Maximum torque	4.150 Nm	4.700 Nm
at speed '	1,200-1,900 rpm	1,400-1,800 rpm
Weight	1,965 kg	1,965 kg
Power-to-weight ratio	2.18 kg/kW	1.97 ka/kW
Specific fuel consumption at rated power	217 g/kWh	222 g/kWh
Fuel consumption at rated power	233 l/h	264 l/h
Overall width of engine (A)**	1,230 mm	1,230 mm
Overall length of engine (B)**	1,768 mm	1,768 mm
Overall height of engine (C)**	1,185 mm	1,185 mm
Top of engine to crankshaft centre (D)**	730 mm	730 mm
Length of engine from front end to edge of flywheel housing (E)**	1,492 mm	1,492 mm

Ratings only for operation of private yachts. The nominal ratings are to DIN/ISO 3046/1. 100 kPA (1000 mbar) barometric pressure, 60% relative humidity, 305 K (32° C) sea water temperature. No change in rating for intake air temperature up to 318 K (45° C).

[&]quot; Minimum dimensions. Precise dimensions on request.

10. Motorización y Propulsión.

Estas són las gráficas de potencia (en kW), par (en Nxm) y de consumo (litros/hora):

V12-1360, 1000 kW (1360 hp)

Este motor tiene un consumo máximo a todo régimen de 264 litros / hora, cada motor, en este caso este consumo seria el doble, ya que son dos los motores principales. Usando el 90% de la capacidad de combustible, que son 3150 litros, obtendríamos una autonomía a pleno régimen de 5, 96 horas a una velocidad de 45 nudos, lo que equivale a 268,47 millas náuticas. Este valor es solo una estimación muy a la ligera, ya que no se han valorado ni las condiciones ambientales, ni los cambios de peso debido al consumo,

ya que esos más de 2600 kg de peso que pierde la embarcación, hacen que la velocidad aumente más de los 45 nudos proyectados. Tampoco se ha tenido en cuenta el consumo del generador de corriente, ya que son 7,5 litros /hora, ínfimos en relación con el total.

Reduciendo esta velocidad a una velocidad de crucero de 38 nudos, la distancia recorrida aumenta hasta unos respetables 323 millas náuticas.

PROPULSIÓN.

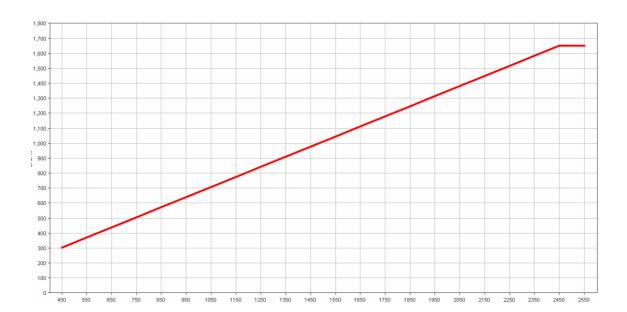
El sistema de propulsión elegido para esta embarcación, ha de ser uno específico para altas velocidades, ya que el rendimiento de los sistemas propulsivos convencionales pierde mucha eficacia a medida que se aumenta la velocidad. Tanto los waterjets como las hélices de superficie son sistemas adaptados para el rendimiento de estos motores como para este rango de velocidades.

Ambos sistemas tienen prácticamente los mismos defectos y virtudes, ya que ambos tienen un alto rendimiento a alto régimen, proporcionan una gran maniobrabilidad ya que en uno las hélices son direccionales y en el otro es la tobera la direccionable, y como defectos más destacables están el pobre rendimiento a bajo y medio régimen, lo cual dificulta también la maniobrabilidad a bajas velocidades. Otro de sus defectos es el volumen ocupado tanto interior como exterior y el engorro de su instalación. En este sentido la hélice de superficie ocupa mucho sitio en la zona exterior del espejo de popa, con el consiguiente peligro a la hora del baño y de la

estiba de la moto de agua en su hangar. Pero en el interior de la cámara de máquinas no tiene engorro ninguno. Por otro lado, el waterjet es voluminoso tanto por fuera del espejo de popa, como por dentro, ya que afuera tiene las toberas, los sistemas direccionales y sobre todo las "cucharas" para la marcha atrás, que al estibarse en la zona superior de las toberas, hacen que halla que desplazar la plataforma de popa muy arriba, dificultando el baño y la estiba de la moto de agua. También por dentro de la cámara de máquinas es muy voluminoso, ya que ahí se encuentra todo el túnel de aspiración de agua y la turbina, ocupando mucho sitio teniendo que desplazar los motores a proa y dejando menos sitio para todo el equipamiento extra que lleva la embarcación en la cámara de máquinas.

Otro factor importante a considerar es el peso, que en el caso de los waterjet es más del doble (sin contar el agua que acumulan en su interior) que el de las hélices de superficie.

Por tanto como conclusión final y analizando los pros y contras, creo que lo mejor es instalar hélices de superficie. Tras esta decisión y analizando el mercado, se eligen del catalogo de la marca especializada en transmisiones ZF el modelo SEAREX 120, que se adapta perfectamente a la potencia y al uso que se le va a dar a la embarcación.


General Characteristics			<u> </u>	* Pleasure Duty
	SeaRex 100	SeaRex 120	SeaRex 140	SeaRex 160
Torque Rating* , Nm (ftlb)	5400 (3977,5)	9090 (6726,60)	15070 (11151,80)	24000 (17760)
HP @ prop. rpm	1135 @ 1500	1915 @ 1500	3175 @ 1500	3875 @ 1150
Weight, kg (lb)	258 (568,27)	423 (931,70)	750 (1651,95)	1100 (2422,86)
Torque / Weight Ratio, Nm/kg (ft/b/lb)	20,83 (7,00)	21,49 (7,22)	20,09 (6,75)	21,82 (7,33)
Shaft Diameter at prop bearing, mm (in.)	75 (2,95)	85 (3,35)	108 (4,25)	120 (4,72)
Thrust Socket Flange Diameter, mm (in.)	349 (13,74)	432 (17,01)	540 (21,26)	584 (22,99)
Overall length L, mm (in.)	1453 (57,20)	1625 (63,98)	1958 (77,09)	2226 (87,64)
Mounting Height H, mm (in.)	584 (22,99)	700 (27,56)	865 (34,06)	990 (38,98)
Half Width W. mm (in.)	290 (11,42)	350 (13,78)	414 (16,30)	480 (18,90)

Ya que las revoluciones máximas a las que trabaja la hélice es de 1500 y las revoluciones máximas del motor son 2300, y para poder dar marcha atrás, hay que instalar en medio una caja de cambios reductora de revoluciones y con inversor de giro, para la marcha atrás. Ya que las hélices se han montado de la marca ZF, tambien se montarán de la misma marca, en este caso se usará el modelo **ZF 2050**, que en sus especificaciones de pleasure duty, cumple perfectamente los requerimientos del motor que son 1360 caballos a 2300 r.p.m. y un par máximo de 4152 Nxm, y los de las hélices, ya que no le manda más de 1500 r.p.m. al ir con una desmultiplicación de 1,50.

ZF 2050 Ratings

Pleasure Duty

RATIOS		MAX. T	ORQUE	POWE	R/RPM	M	AXIMU	JM RA	TED	POWE	R	MAX.
	ha 1103	Nm	ftlb	kW	hp	kW	hp	kW	hp	kW	hp	RPM
							rpm	2300	rpm	2450	rpm	
	1.086*, 1.250*, 1.350*, 1.500, 1.639*, 1.765*, 2.032, 2.276*, 2.519	4802	3542	0.5028	0.6743	1056	1416	1157	1551	1232	1652	2600

Sección 11. Estudio de Estabilidad.

11. Estudio de Estabilidad.

11. ESTUDIO DE ESTABILIDAD.

El estudio de estabilidad se realizará siguiendo la Norma Española UNE-EN ISO 12217-1 la cual es la versión traducida al español de la Norma Europea EN ISO 12217-1 de abril de 2002, que a su vez es íntegramente la Norma Internacional ISO 12217-1:2002. cuya parte 1 esta dedicada a embarcaciones no propulsadas a vela de eslora igual o superior a 6 mts.

La embarcación se integrará en la categoría de diseño B, las cuales son diseñadas para operar con olas de hasta 4 m de altura significativa y un viento Beaufort de fuerza igual o menor de 8. Estas condiciones se pueden encontrar en viajes en alta mar de duración suficiente o costeros cuando no siempre pueda ser posible encontrar una adecuada protección. Estas condiciones se pueden encontrar también en mares interiores de una extensión suficiente para que se generen olas de altura apreciable. Se considera que los vientos pueden alcanzar rachas de 21 m/s.

En el estudio de la estabilidad se requieren dos condiciones de carga de las embarcaciones, y en algún punto han de usarse las dos condiciones. Estas condiciones son, la condición mínima operativa, que seria la embarcación en su condición de rosca a la cual se le añaden el equipo mínimo de de seguridad, el equipamiento de a bordo, una tripulación mínima, y una cantidad mínima de consumibles (agua y gasoil). Y la condición de máxima carga, que seria la condición de rosca a la que se añade la carga máxima total hasta alcanzar el asiento de diseño.

11. Estudio de Estabilidad.

Condición Mínima Operativa.

	Peso	LCG	VCG	TCG
Rosca+equipamiento	24127	6,372	1,665	0,000
Gasoil	294	4,928	0,950	0,000
Agua dulce	80	4,928	1,600	0,000
Tripulación	225	5,613	3,000	0,000
Total	24302	6,343	1,668	0,000

Desplazamiento = 24,726 Tm.

Eslora de flotación = 14,971 m

Calado en Proa= 0,914 m

Calado en Popa= 0,819 m

Calado en la Maestra= 0,862 m

Condición Máxima Carga.

	Peso	LCG	VCG	TCG
Rosca+equipamiento	24127	6,372	1,665	0,000
Gasoil	2940	4,928	0,950	0,000
Agua dulce	800	4,928	1,600	0,000
Tripulación cubierta Superior	600	5,613	3,000	0,000
Tripulación cubierta Inferior	450			
Equipaje y Víveres	350			
Total	2926 <i>7</i>	6,343	1,668	0,000

Desplazamiento = 29,267 Tm.

Eslora de flotación = 15,036 m

Calado en Proa= 0,942 m

Calado en Popa = 0,951 m

Calado en la Maestra= 0,947 m

11. Estudio de Estabilidad.

Opción	1	2	3	4	5	6
Categorías Posibles	АуВ	СуD	В	СуD	СуD	СуD
Cubiertas o protecciones	Cubierta	Cubierta	Cualquier	Cualquier	Cubierta	Cualquier
	completa	completa	tipo	tipo	parcial	tipo
Aberturas de inundación	6.1.1	6.1.1	6.1.1	6.1.1	6.1.1	6.1.1
Ángulo de inundación	6.1.2	6.1.2	6.1.2	6.1.2	6.1.2	6.1.2
Ensayo de compensación de	6.1.3	6.1.3	6.1.3	6.1.3		
cargas						
Resistencia a las olas+ viento	6.2	6.2	6.2	6.2	6.2	6.2
Escora debida a la acción del viento	6.3		6.3			
Requisitos de flotación		6.4		6.4	6.4	6.4
Material de flotación			6.5	6.5		
Material de flotación			Anexo F	Anexo F		

La opción 1 es por la que se regirá el estudio de estabilidad de esta embarcación.

6. Ensayos, Cálculos y Requisitos.

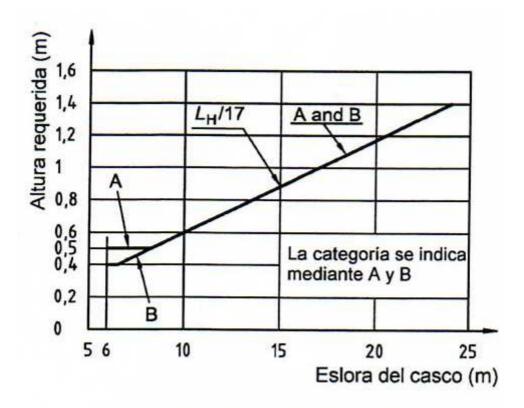
6.1 Inundación.

6.1.1 Aberturas de Inundación.

En las embarcaciones que se les va a otorgar la categoría de diseño A o B solo se les permite aberturas inundables con algún dispositivo de cierre, únicamente las aberturas esenciales para la ventilación o combustión del motor no tienen que equipar estos dispositivos.

6.1.2 Altura de Inundación.

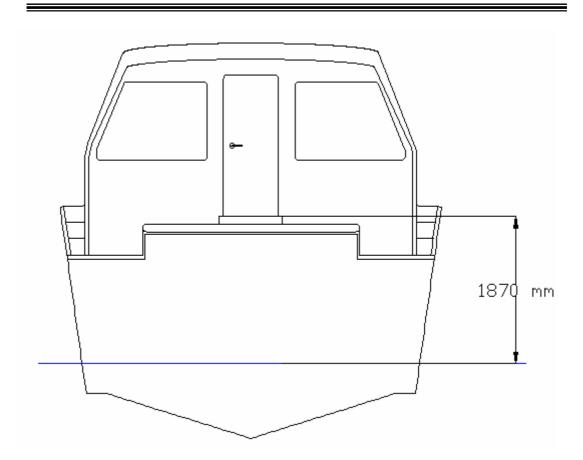
El ensayo para comprobar la altura de inundación sirve para demostrar que la embarcación dispone de un margen suficiente de francobordo en la condición de carga de desplazamiento antes de que se embarque el agua a bordo.


El ensayo debe realizarse utilizando el personal que se describe a continuación mediante los pesos que representan al personal (a razón de 75 kg por persona) o mediante los cálculos usando el plano

11. Estudio de Estabilidad.

de formas y el desplazamiento calculado a partir del pesaje o la medición de los francobordos.

La embarcación ha de ser cargada en aguas tranquilas con todos los elementos que constituyen la carga máxima total y con las personas que conformen la tripulación límite de forma que se consiga el asiento de diseño.


Tras esto hay que medir la altura desde la línea de flotación hasta los puntos por los que podría comenzar a entrar agua por una abertura inundable.

a) Categorías de diseño A y B

Altura requerida según la Grafica:

11. Estudio de Estabilidad.

La altura mínima de inundación es de 1,87 m, que es la mínima existente entre el calado máximo y la parte baja de la puerta de acceso al interior de la embarcación. Por tanto supera el mínimo de 1,076 m por tanto **CUMPLE** con la altura de inundación.

6.2.3 Ángulo de Inundación.

Este requisito sirve para comprobar que existe un margen suficiente del ángulo de escora antes de que puedan entrar en la embarcación cantidades significativas de agua.

Las embarcaciones deben evaluarse en las condiciones mínimas operacionales a menos que la relación m_{LDC} / m_{MOC} > 1,15 en cuyo caso se deben evaluar también el la condición de desplazamiento en carga.

El este caso concreto hay que analizar las dos condiciones de carga, ya que la relación es mayor a 1,15.

11. Estudio de Estabilidad.

Categoría	Angulo Mínimo de inundación (grados)					
de Diseño	Opciones 1 a 5, utilícese la que sea mayor					
Α	Ø ₀ + 25	30				
В	Ø ₀ + 15	25				
С	Ø ₀ + 5	20				
D	$ ot\!\!\!/ \mathscr{O}_{O}$					

El punto de inundación más probable será en la zona baja del mamparo que separa la cubierta exterior de la cubierta cockpit (el dibujado en la figura anterior) ya que este mamparo no es estructural, puede entrarle agua tanto por la zona lateral baja como por la zona lateral de arriba.

Para saber en que columna se obtienen los mayores ángulos de escora, primero tenemos que calcular el ángulo de compensación de pesos (\emptyset_o).

6.2 Ensayo de Compensación de Pesos.

Este ensayo sirve para comprobar que la embarcación cargada con el peso del desplazamiento en carga tiene una estabilidad suficiente ante un movimiento de pesos realizado por la tripulación.

Para todas las categorías de diseño, el ángulo de escora $\mathcal{O}_{\mathcal{O}}$ no debe de ser mayor de:

$$\mathcal{O}_O = 10 + \frac{(24 - L_{_H})^3}{600}$$

$$\emptyset_O = 10 + \frac{(24-18,3)^3}{600} = 10,309$$
 °

11. Estudio de Estabilidad.

Esta embarcación dispone de dos niveles de cubierta, por tanto habría que calcular dos momentos escorantes debidos a la acumulación de tripulantes en una banda, pero según la norma, el número máximo de personas que pueden estar en una cubierta, no debe de exceder de dos por cada metro cuadrado. La cubierta superior dispone de una zona de cubierta para la tripulación por la que pueden estar de pie, sentadas, tumbadas o realizar diversas actividades con un área mayor al doble de la tripulación límite en metros cuadrados. Por tanto se calculará el momento escorante solo para la condición de la tripulación al completo en la cubierta superior.

$$CD = \frac{CL}{4 \times A_c}$$

Donde:

CL es la tripulación límite. En este caso 14 tripulantes.

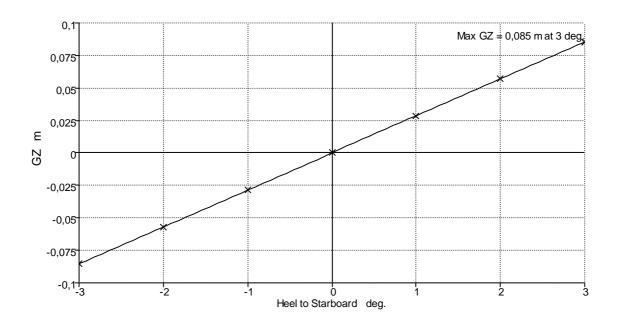
 A_c es el área prevista para el uso de la tripulación cuando la embarcación se encuentra navegando. En este caso son 50,842 m², donde se incluyen el interior del cockpit, la cubierta exterior trasera, los solariums de proa y popa y los pasillos laterales de proa.

$$CD = \frac{14}{4 \times 50,842}$$

CD = 0.069

Al ser CD<0,5 entonces MC = $314*CL*B_C*(1-CD)$

Donde:


 B_C Es la distancia transversal entre los máximos puntos extremos del área A_c . en este caso 4,75 m.

$$MC = 314 * 14 * 4,75 * (1 - 0,069)$$

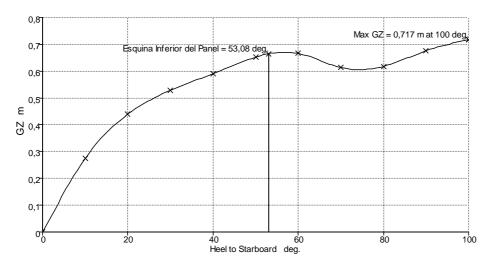
MC = 19440.211 Newtons metros

11. Estudio de Estabilidad.

Al dividir el momento de escora por compensación de pesos entre el producto del desplazamiento máximo en kilogramos y 9,8 (factor de conversión de Newton a kilogramos), obtenemos el valor del GZ=0,069, lo que equivale a un ángulo de escora de 2,42°.

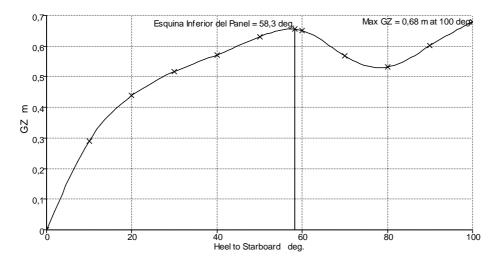
El ángulo de escora también se puede calcular de forma directa en el programa Hidromax sustituyendo el peso de las personas por el momento de escora MC en Kilogramos metro situándolo a un metro de crujía. Utilizando este método, el resultado del programa es de 2,51º. Por tanto un valor muy parecido a los 2,42º del método anterior. En el anexo 2 en el que se incluyen los cálculos realizados en Hidromax se pueden ver el procedimiento utilizado.

Por tanto, como el ángulo de escora máximo \mathcal{Q}_0 no debía ser superior al valor de 10,309° y el obtenido es de 2,42°, **CUMPLE** con la norma en este punto.


11. Estudio de Estabilidad.

Por otra parte el ángulo mínimo de inundación para la categoría de diseño B será de:

$$\emptyset_O$$
 +15 = **25,309°**


Calculando el ángulo de inundación mínimo para esta embarcación en particular, siendo la zona del panel que cierra el cockpit en toda su zona trasera, comenzando a entrar agua por su zona más baja cuando se superan los **53,08º** a plena carga y **58,3º** en la condición de mínima operativa, tal como indican las siguientes tablas.

Condición de Máxima Carga.

11. Estudio de Estabilidad.

Condición de Mínima Carga Operativa.

Lo cual no lleva como conclusión que **CUMPLE** la norma en el apartado del ángulo de inundación.

6.3 Resistencia a las Olas y al Viento.

Como la relación m_{LDC} / m_{MOC} > 1,15 no se cumple en esta embarcación, la resistencia a olas y al viento ha de calcularse en la condición de desplazamiento en carga y en la condición mínima operacional.

6.3.2 Balance transversal debido a las olas y al viento.

La curva de momentos del par adrizante de la embarcación se debe establecer con el ángulo de inundación o el ángulo de estabilidad nula o un ángulo de 50°, cualquiera que sea el menor.

Se considera que el momento de escora al viento, M_w , expresado en newtons metros, es constante para todos los ángulos de escora y se debe calcular como sigue:

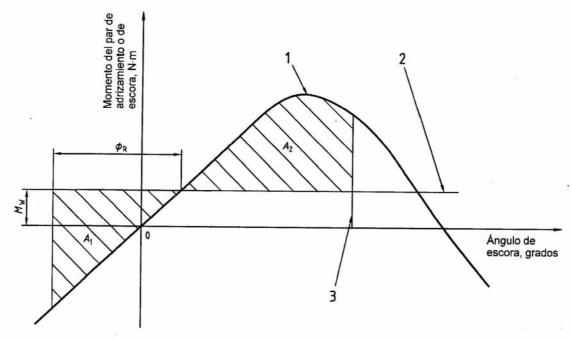
$$M_W = 0.3 \times A_{LV} \times (A_{LV}/L_{WL} + TM) \times v_W^2$$

11. Estudio de Estabilidad.

Donde:

TM es el calado en la mitad de la eslora de flotación (metros).

 $\mathbf{v}_{\mathbf{W}}$ es la velocidad del viento, en la categoría de diseño B es de 21 m/s.


 A_{LV} es el área expuesta al viento, no debe tomarse menor de $0.55 \times L_H \times B_H$.

El ángulo de balance previsto \mathcal{O}_R se debe calcular como sigue para la categoría de diseño B:

$$Ø_R = 20 + 20/V_D$$

V_D es el volumen de desplazamiento de la embarcación medida en metros cúbicos.

Las curvas de momentos de par adrizante y de momentos de escora debido al viento se deben dibujar en el mismo gráfico como se ve en la siguiente gráfica. El área A_2 debe ser mayor que el área A_1 , donde A_1 y A_2 son las áreas que aparecen en la grafica.

- Leyenda
- 1 Momento del par de adrizamiento
- Momento de escora debido al viento ϕ_D o ϕ_V si es menor, oó 50° si es menor

Fig. 5 - Resistencia al balance debido a las olas y al viento

11. Estudio de Estabilidad.

Condición de Máxima Carga.

Momento de escora debido al viento.

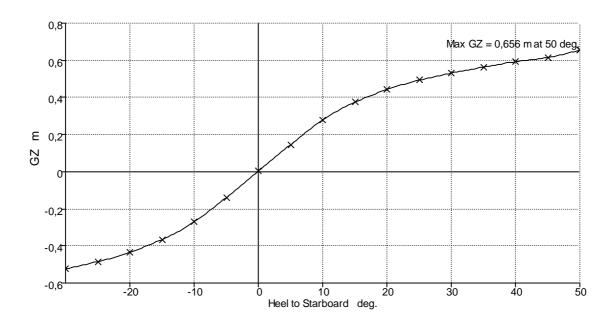
 $v_W = 21 \text{ m/s}$

 $A_{LV} = 51,859 \text{ m}$

TM = 0.947 m

 $L_{wl} = 15,077 \text{ m}$

$$M_w = 0.3 \times 51.859 \times (51.859 / 15.077 + 0.947) \times 21^2$$


$M_w = 30096,293 N \times m$

Angulo de balance.

 $V_D = 28,146 \text{ m}^3$

$$Ø_R = 20 + 20/V_D$$

 $Ø_R = 20,711^o$

El cociente de dividir el momento de escora debido al viento entre el producto del desplazamiento máximo en kilogramos y 9,8 (factor de conversión de Newton a kilogramos), obtenemos el valor del GZ=0,106, por tanto el momento de escora máximo obtiene unas coordenadas de GZ=0,106 y ángulo $=3,579^{\circ}$.

11. Estudio de Estabilidad.

Por tanto, las áreas A_1 y A_2 son respectivamente:

 $A_1 = (3,788 + (17,132 \times 0,106) + ((3,579 \times 0,106)/2)) \times (28850 \times 9,8/1000)$

 $A_1 = 1638,047 \text{ KN } x \text{ m } x \text{ grado}$

 $A_2 = (21.87 - (50 \times 0.106) \times (28850 \times 9.8 / 1000)$

 $A_2 = 4684,836 \text{ KN } x \text{ m } x \text{ grado}$

Al ser A_2 mayor que A_1 esta embarcación cumple con la normativa de balance transversal debido al viento y las olas.

Condición de Mínima Carga Operativa.

Momento de escora debido al viento.

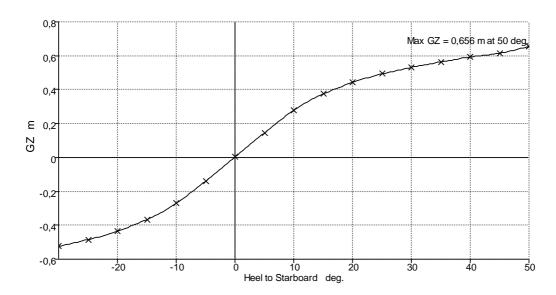
 $v_W = 21 \text{ m/s}$

 $A_{LV} = 53,189 \text{ m}$

TM = 0.851 m

 $L_{wl} = 14,813 \text{ m}$

$$M_w = 0.3 \times 53,189 \times (53,189 / 14,813 + 0,851) \times 21^2$$


$M_w = 31255,801 \text{ N x m}$

Angulo de balance.

 $V_D = 23,834 \text{ m}^3$

$$Q_R = 20 + 20 / V_D$$

 $Ø_R = 20,839^o$

11. Estudio de Estabilidad.

El cociente de dividir el momento de escora debido al viento entre el producto del desplazamiento máximo en kilogramos y 9,8 (factor de conversión de Newton a kilogramos), obtenemos el valor del GZ=0,131, por tanto el momento de escora máximo obtiene unas coordenadas de GZ=0,131 y ángulo $=4,1^{\circ}$.

Por tanto, las áreas A_1 y A_2 son respectivamente:

 $A_1 = (3.8 + (16.739 \times 0.131) + ((4.1 \times 0.131)/2)) \times (24430 \times 9.8/1000)$

 $A_1 = 1499,057 \ KN \ x \ m \ x \ grado$

 $A_2 = (20,58 - (50 \times 0,131) \times (24430 \times 9,8 / 1000)$

 $A_2 = 3358,978 \text{ KN } x \text{ m } x \text{ grado}$

Al ser A_2 mayor que A_1 esta embarcación cumple con la normativa de balance transversal debido al viento y las olas.

6.3.3 Resistencia a las Olas.

La curva de brazos de palanca de par de adrizamiento con los ángulos de escora o 50°, cualquiera que sea menor, debe cumplir, además de los requisitos anteriores, lo siguiente:

Al obtenerse el momento máximo del par de adrizamiento en un valor superior a 30°, el momento del par de adrizamiento con 30° de escora no debe ser menor de 7 KN x m para la categoría de diseño B. Además el brazo de palanca del par de adrizamiento a 30° no debe ser menor de 0,2 m.

Condición de Máxima carga.

RM = 150,130 KN x m

GZ = 0.531 m

Condición Mínima Operativa.

RM = 117,792 KN x m

GZ = 0.492 m

Por tanto, en las dos condiciones de carga evaluadas **CUMPLE** los requisitos de resistencia a las olas al ser los valores de RM y GZ a 30º superiores a los valores indicados.

11. Estudio de Estabilidad.

ANEXO 1 HOJAS DE TRABAJO

Se suministran las siguientes hojas de trabajo como ayuda para la comprobación del cumplimiento de una embarcación con esta parte de la Norma ISO 12217-1.

11. Estudio de Estabilidad.

ISO 12217-1 EMBARCACIONES NO PROPULSADAS A VELA DE ESLORA IGUAL O SUPERIOR A 6m. HOJA DE CÁLCULO Nº 1

Diseño: Proyecto de yate tipo "OPEN" de 18m de eslora máxima.

Categoría de diseño pretendida	Monocasco/multicasco						
Característica	Símbolo	Unidad	Valor	Referencia			
Eslora del casco según la Norma ISO 8666	L _H	m	18,3	3.3.1			
Peso:							
Carga máxima total:				3.4.2			
Tripulación limite deseada	CL	-	14	3.5.3			
Peso de:							
Tripulación limite deseada(75kg/persona)		kg	1050				
Provisiones + efectos personales		kg	350				
Agua dulce		kg	800				
Combustible		kg	2940				
Otros líquidos llevados a bordo		kg	-				
Pañoles, maquinaria de respeto y carga		kg	-				
Equipo opcional y accesorios no incluidos en el		kg	-				
equipo básico							
Balsa salvavidas neumática		kg	-				
Otros botes llevados a bordo		kg	-				
Margen para futuras inclusiones		kg	-				
Carga máxima total= suma de anteriores	m_{MTL}	kg	5140	3.4.2			
Condición de peso en rosca	m_{LCC}	kg	24127	3.4.1			
Peso del desplazamiento en carga= m _{LCC} +m _{MTL}	m_{LDC}	kg	29273	3.4.4			
Peso de:							
Mínimo numero de tripulantes de acuerdo con el apartado 3.4.6							
Equipo esencial de seguridad, no inferior a(Lh -2,5) ²		kg	225	3.4.6			
Pañoles de no consumibles y equipo normalmente llevado a bordo							
Agua de lastre en los tanques en los que se indique en el manual del		kg	250	3.4.6			
propietario que se llenan cuando la embarcación está a flote							
Balsa salvavidas neumática		kg	-	3.4.6			
Carga a incluirse en la condición de embarcación en rosca							
Peso de la condición de embarcación en rosca							
Peso en la Condición Mínima Operativa =m _{LCC} +m _L		kg	-	3.4.6			
		kg	-	3.4.6			
	m_{L}	kg	475	3.4.6			
	m_{LCC}	kg	24127	3.4.1			
	m_{MOC}	kg	24726	3.4.7			
¿Está o no propulsada a vela la embarcación?			-	3.1.2.			
Superficie nominal de las velas	As	M^2	-	3.1.2			
Relación superficie de las velas/desplazamiento		-	-	3.1.2			
<u>CLASIFICADA COMO</u> [no propulsada a vela si As/(m _{LDC}) ^{2/3} <0,07]		<u> </u>	NO	212			
¿PROPULSADA A VELA / NO PROPULSADA A VELA?			NO	3.1.2			

Si PROPULSADA A VELA, utilice la Norma ISO 12217-2

PASAD A LA HOJA DE TRABAJO No. 2

11. Estudio de Estabilidad.

ISO 12217-1 HOJA DE CÁLCULO Nº 2 ENSAYOS QUE SE APLICAN

Cuestión	Respuesta	Referencia
¿Tiene la embarcación cubierta completa? (vease definición) ¿SI / NO?	SI	3.1.6
¿Tiene la embarcación cubierta parcial? (vease definición) ¿SI / NO?	NO	3.1.7
Relación m_{LCC}/m_{MOC} (utilicese los datos de la Hoja de Trabajo 1)	1,193	
Si la relación > 1,15 se requiere que se cumpla el apartado 6.3 tanto para m _{LCC} co	omo para m _{MOC}	6.3.1

Caracteristica	Símbolo	Unidad	Valor	Referencia
Área expueste al viento	A_{LV}	m ²	53,189	3.3.7
Eslora del casco	L _H	m	18,3	3.3.1
Manga del casco	B_{H}	M	5	3.3.3
Relación A _{LV} / (L _H X B _H)		-	0,581	

Escoja CUALQUIERA de las siquientes opciones, y utilice todas las hojas de trabajo que se indican en esa opción.

Op	oción	1	2	3	4	5	6
Categorí	as posibles	АуВ	C y D	В	СуD	CyD	C y D
Categorí	as posibles	cubierta	cubierta	cualquiera	cualquiera	cubierta	Cualquiera
Cubierta	o protección	3	3	3	3	3	3
•	ompensación de esos	4	4	4	4	4	4
Aberturas	s inundables	4ª	4ª	4ª	4 ^{a,b}		
Ensayo de altura de	Todas las embarcaciones	4	4	4	4 ^b	4	4
inundación	Método completo	5	5	5	5 ^b	5	5
Resistencia a	las olas+viento	6a + 6 b ^a		6a + 6b ^a			
Escora del	oido al viento		7 ^{a ,c}		7 ^{a ,c}	7ª,c	7ª,c
Ensayo d	de flotación			8	8		
Material	de flotación			8	8		
RES	UMEN	9	9	9	9	9	9

a Si la relación $m_{LCC}/m_{MOC} > 1,15$ este requisito debe completarse y satisfacer AMBAS condiciones, la Condición Minima Operativa y la Condición de Desplazamiento en Carga.

Opción Seleccionada	В
---------------------	---

b No se requiere efectuar este ensayo en las embarcaciones que se vayan a evaluar utilizando la opción 4 si, durante el ensayo de inundación en carga de la Hoja de Trabajo 8, se ha demostrado que la embarcación puede soportar un peso seco equivalente a un tercio más que la carga máxima

c No hay que aplicar la Hoja de Trabajo 7 más que si en la embarcación se cumple que A_{LV} / (L_H X B_H)>1,0.

11. Estudio de Estabilidad.

ISO 12217-1 HOJA DE CÁLCULO Nº 3 ENSAYO DE COMPENSACIÓN DE PESOS

Calculo del momento de escora de las embarcaciones que tengan un solo nivel:

Característica	Símbolo	Unidad	Valor	Referencia
Plano del área de movimiento de la Tripulación	A_{c}	m ²	50,842	B.3.1a)
Densidad de la tripulación = $CL / 4 A_c$	CD	m ⁻²	0,069	B.3.1a)
Manga máxima del área de la tripulación	B_c	m	4,75	B.3.1b)
Momento de escora - si CD > $0.5 = 314 \text{ A}_c B_c$ De la tripulación - si CD < $0.5 = 314 \text{ CL B}_c(1\text{-CD})$	M_c	N*m	19440,221	B.3.1b)

Cumplimiento del requisito:

Característica	Símbolo	Unidad	Valor	Referencia
Momento equivalente en kg * m para el ensayo = M _c /9,806	A _c	m ²	1982,481	
Ángulo de escora al aplicar M _c grados	\emptyset_{O}	grados	2,42	6.2
Máximo ángulo de escora permitido = $10 + \frac{(24 - L_H)^3}{600}$	${\cal O}_{O(R)}$	grados	10,309	6.2
¿CUMPLE	E / NO CUMPLE?	SI		

11. Estudio de Estabilidad.

ISO 12217-1 HOJA DE CÁLCULO Nº 4 INUNDACIÓN

Aberturas Inundables

Pregunta	Respuesta	Referencia
¿Se han identificado todas las correspondientes aberturas inundables? SI/NO	SI	6.1.1.1
¿Todos los dispositivos cerrados satisfacen la Norma ISO 12216?	SI	6.1.1.2
¿No se han fijado dispositivos del tipo abierto por debajo de 0,2 m sobre la línea de flotación a menos que cumplan las Normas ISO 9093 o ISO 9094? SI/NO	SI	6.1.1.3
¿Están todas las aberturas abiertas fijadas con dispositivos cerrados? (Excepto las aberturas para la ventilación y combustión del motor) SI/NO	SI	6.1.1.5
Categorías posibles: A o B si todas son SI, C o D si son SI las tres primeras	В	6.1.1

Ángulo de Inundación:

Característica	Símbolo	Unidad	Valor	Referencia
<u>Valor requerido</u> : (donde \emptyset_O = ángulo del ensayo de compensación de p	pesos)		1	6.1.3
categoría A = mayor de $(\emptyset_O + 25)^\circ$ ó 30°	$\emptyset_{D(R)}$	grados		Tabla 3
categoría B = mayor de $(\mathcal{O}_O + 15)^\circ$ ó 25°	$\emptyset_{D(R)}$	grados	25,309°	Tabla 3
categoría C = mayor de $(\emptyset_O + 5)^\circ$ ó 20°	$\emptyset_{D(R)}$	grados		Tabla 3
categoría D = \emptyset_0	$\emptyset_{D(R)}$	grados		Tabla 3
Área de las aberturas que se puedan sumergir = $50 L_{H}^{2}$		mm ²	16744,5	6.1.3
<u>Ángulo real de inundación</u> : con un peso = m _{MOC}	\emptyset_D	grados	58,3°	6.1.3
Si la relación m_{LDC} / m_{MOC} > 1,15 entonces con un peso = m_{LDC}	\emptyset_D	grados	53,08°	6.1.3
Método utilizado para determinar \emptyset_{D}	Anexo C			
Categoría de diseño posible según el ángulo de inundación				6.3

Altura de Inundación:

	Requisito	Requisito básico	Valor reducido para pequeñas aberturas	Valor reducido para fueraborda	Valor incrementado a proa
Aplicable a		Todas las	Todas las opciones	Opciones 3 y 4	Opciones 3, 4 y 6
		opciones	pero sólo si se		
			utilizan las figuras		
Referencia		6.1.2.2 d)	6.1.2.2.c)	6.1.2.2.c)	6.1.2.2 b)
¿Obtenido de las figu	ras 2 +3 o el anexo A		=básicox0,75	=básicox0,80	=básicox1,15
Área n	náxima de las pequeñas aberturas (50 ${ m L_H}^2$) (mr	m ²)	16744,5	///////////////////////////////////////	///////////////////////////////////////
Altura requerida de	Figura 2 / anexo A	Categoría A			
inundación $h_{D(R)}$	Figura 2 / anexo A	Categoría B	1,076		
	Figura 2 / anexo A	Categoría C			
	Figura 3 / anexo A	Categoría D			
Altura real de inunda	ción h _D		1,87		
	Categoría de diseño posible		В		
	Categoría de diseño posible segú	n la altura de inun	dación= la más baja de las	anteriores	

11. Estudio de Estabilidad.

ISO 12217-1 HOJA DE CÁLCULO Nº 5

ALTURA DE INUNDACIÓN

Cálculo utilizando el anexo A suponiendo que se utiliza la opción.....B...

Característ	ica	Símbolo	Unidad	Abertura 1	Abertura 2	Abertura 3	Abertura 4
Posición de las aberturas:							
Menor distancia longitudinal proa/popa		X	M	4,11			
Menor distancia trasversal desde la rega	la	Y	M	0,45			
$F_1 = \text{mayor de } (1-x/LH) \text{ o } (1-y/BH)$		F_{I}	-	0,110			
Tamaño de las aberturas:							
Área conjunta de las aberturas hasta el e	extremo superior de cualquier		2.7				
abertura inundable		а	Mm ²	16744,5			
Distancia longitudinal de la abertura des	sde la punta de la roda	X´D	m	14,19			
Valor límite de $a = (30 L_H)^2$			Mm ²	301401			
Si $a > (30 L_H)^2$, $F^2 = 1.0$							
Si $a < (30 \text{ L}_{\text{H}})^2$, $F^2 = 1 + \frac{x'_D}{L_H} \left[\frac{\sqrt{a}}{75L_H} - 0,4 \right]$		F_2	-	0,763			
Tamaño de los nichos:							
Volumen de los nichos que no sean auto	-achicables de acuerdo con la		М				
Norma ISO 11812		V_R	IVI				
Franco bordo en la mitad de la eslora (v	ease el apartado 3.3.5)	F_{M}	m	2,998			
$K = V_R / \left(L_H \; B_H \; F_M \right)$		K	-				
Si la abertura no es un nicho, $F_3=1$	0,						
Si el nicho es de achique rápido, $F_3 =$	0,7	F_3	-	1			
Si el nicho no es de achique rápido, F_3 =($(0,7+k^{0,5})$						
Desplazamiento:							
Volumen del desplazamiento en carga (vease el apartado 3.3.5)	V_D	M^3	28,55			
$B = B_H$ para monocascos, B_{WL} para mult	icascos	В	-	5			
$F_{4}=[(10 \text{ V}_{\text{D}})/(\text{L}_{\text{H}} \text{ B}^{2})]^{1/3}$		F_4	-	0,850			
Flotación:			-				
Para las embarcaciones que utilicen las	opciones 3 ó 4,						
$F_4 = 0.8$		F_5	M	1,0			
Para todas las otras embarcaciones, F_4 =	1,0						
Altura requerida por cálculo: = $F_1 F_2 F_3$	F ₄ F ₅ L _H /15	$h_{D(R)}$	M	0,087			
Altura de inundación requerida con	Categoría A	$h_{D(R)}$	M				
los límites que se deban aplicar	Categoría B	$h_{D(R)}$	M	0,4			
(vease en el anexo A la tabla A.1)	Categoría C	$h_{D(R)}$	M				
	Categoría D	$h_{D(R)}$	M				
Altura medida de inundación:		h_D	M	1,87			
Cate	goría de diseño posible:	1	I	В			
				1	La más baja de l	as anteriores =	

11. Estudio de Estabilidad.

ISO 12217-1 HOJA DE CÁLCULO Nº 6a RESISTENCIA A LAS OLAS + VIENTO

Datos de entrada:

categorías de diseño A y B solamente

Característica	Simbolo	Unidad	categoría	Categoría	Referenci
			A	В	a
Peso en la condición mínima de operación		Kg		24726	3.4.7
Peso del desplazamiento en carga		Kg		29273	3.4.4
¿Es la relación de $m_{LDC} / m_{MOC} > 1,15$? S	I / NO		ı		SI
NB: Si es SI, se deben rellenar las hojas 6ª y 6b en am	bas condiciones de	carga			6.3.1
Volumen de desplazamiento (=m _{LDC} o m _{MOC} /1025)	V_D	M^3		24,122	3.4.5
Plano del área de todos los nichos	A_R	m ²			6.3.1
Plano del área de todos los nichos más allá de LH / 2	A_{RF}	m ²			6.3.1
Área expuesta al viento (del perfil de agua anterior de la embarcación)	A_{LV}	m ²		53,189	3.3.7
Área expuesta al viento que se utilice (para no ser < 0,55 LH BH)	A'_{LV}	m ²		50,325	6.3.2
Eslora en la flotación	L_{WL}	m ²		14,813	3.3.2
Calado a la mitad de LWL	T_M	m		0,851	6.3.2
Ángulo de inundación	\emptyset_D	Grados		58,3	3.2.2
Cálculo de la velocidad del viento	V_W	m/s		21	3.5.1

Limitaciones en los nichos:

Característica	Símbolo	Valor	Referencia
Relación entre el área del nicho y eslora x manga	A_R/L_HB_H		
Categoría de diseño posible (A si < 0,2, B si < 0,3)			
Relación entre el área de los nichos de proa y eslora manga	$A_{RF}/L_H B_H$		
Categoría de diseño posible (A si < 0,1, B si < 0,15)			

11. Estudio de Estabilidad.

ISO 12217-1

HOJA DE CÁLCULO Nº 6b RESISTENCIA A LAS OLAS + VIENTO

Obtenida de la curva de momentos de adrizamiento (véase el anexo D)

Balance trasversal debido a las olas y al viento:

Característica	Símbolo	Unidad	categoría A	Categoría B	Referencia
Ángulo de estabilidad nula	\mathcal{O}_V	Grados			3.3.8
Menor valor de \emptyset_D , \emptyset_V , o 50°	\emptyset_{A2}	Grados		50	
Momento de escora debido al viento =0,3 A'_{LV} $(A'_{LV}/L_{WL} + T_M) V_W^2$	$M_{ m W}$	N * m		28285,525	6.3.2
Ángulo previsto CategoríaA=(25+20/V _D) De balance CategoríaB=(20+20/V _D)	\mathcal{O}_R	Grados		20,839	6.3.2
Área A1 por debajo de M_W , desde la posición de equilibrio hasta \mathcal{O}_R	A_I	Cualquiera		1638,047	Figura 5
Área A_2 por encima de $M_{\rm W}$, desde la posición d equilibrio hasta \mathcal{O}_{A2}	e A_2	Cualquiera		4684,84	Figura5
Relación de A ₂ /A ₁		-		2,86	6.3.2
¿Es la relación A_2/A_1 mayor o igual a 1,0? SI	/NO	,		SI	6.3.2

Resistencia a las Olas:

Característica	Símbolo	Unidad	categoría A	Categoría B	Referencia
Menor valor de \emptyset_D , \emptyset_V , o 50°	$Oldsymbol{\emptyset}_{A2}$	Grados	5	0	
Ángulo de escora cuando el momento de adrizamiento es máximo		Grados	117,3		
Si Ø _{GZmax} es mayor o igual a 30°:					
Valor máximo de momento de adrizamiento en la zona	RM_{max}	N*m	17933	34,179	
entre 30° y \emptyset_{A2}					
Máximo valor del momento de adrizamiento requerido		N*m		7	
¿Es RM _{max} mayor o igual que el máximo valor requerido	? CUMPLE/N	O CUMPLE	CUM	IPLE	
Máximo valor del par de adrizamiento requerido=	GZ_{max}	М	0,753		
$RM_{max} / (9,806 m_{LDC})$	GZ _{max}	141			
Valor máximo del brazo del par de adrizamiento		М	0,20		
requerido		141	0,	20	
¿Es GZ _{max} mayor o igual que el valor máximo requerido	? CUMPLE/N	O CUMPLE	CUM	1PLE	
Si Ø _{GZmax} es menor 30°:	RM _{max}	N*m			
Valor máximo del par de adrizamiento	TCIVImax	14 111			
Valor requerido de RM _{max} (A=750/Ø _{GZmax} , B=210/	\mathcal{O}_{GZmax})	N*m			
¿Es RM mayor o igual que el valor máximo requerido	o? CUMI	PLE / NO			
CUMPLE					
Valor máximo del brazo del par de adrizamiento=	GZ_{max}	М			
$RM_{max} / (9,806 m_{LDC})$	GZ _{max}	141			
Valor máximo del brazo del par de adrizamiento		М			
requerido =6/ \mathcal{Q}_{GZmax}		141			
¿Es GZ _{max} mayor o igual que el valor máximo requerido	? CUMPLE/N	O CUMPLE			

11. Estudio de Estabilidad.

ISO 12217-1 HOJA DE CÁLCULO Nº 6a RESISTENCIA A LAS OLAS + VIENTO

Datos de entrada:

categorías de diseño A y B solamente

Característica	Simbolo	Unidad	categoría A	Categoría B	Referencia	
Peso en la condición mínima de operación		Kg		24726	3.4.7	
Peso del desplazamiento en carga		Kg		29273	3.4.4	
¿Es la relación de $m_{LDC} / m_{MOC} > 1,15$? S	I / NO	1			SI	
NB: Si es SI, se deben rellenar las hojas 6ª y 6b en amb		6.3.1				
Volumen de desplazamiento (= m_{LDC} o $m_{MOC}/1025$)	V_D	M^3		28,55	3.4.5	
Plano del área de todos los nichos	A_R	m^2			6.3.1	
Plano del área de todos los nichos más allá de LH /	A_{RF}	m ²			6.3.1	
2	A_{RF}	m m	m ⁻			
Área expuesta al viento (del perfil de agua anterior	A_{LV}	m ²		51,859	3.3.7	
de la embarcación)	1 LV	Lv III		0.5,007		
Área expuesta al viento que se utilice (para no ser <	A'_{LV}	m ²		50,325	6.3.2	
0,55 LH BH)	Lv	m				
Eslora en la flotación	$L_{W\!L}$	m ²		15,077	3.3.2	
Calado a la mitad de LWL	T_{M}	m		0,947	6.3.2	
Ángulo de inundación	\mathcal{O}_D	Grados		53,08	3.2.2	
Cálculo de la velocidad del viento	V_W	m/s		21	3.5.1	

Limitaciones en los nichos:

Característica	Símbolo	Valor	Referencia
Relación entre el área del nicho y eslora x manga	A_R/L_HB_H		
Categoría de diseño posible (A si < 0,2, B si < 0,3)			
Relación entre el área de los nichos de proa y eslora manga	$A_{RF}/L_H B_H$		
Categoría de diseño posible (A si < 0,1, B si < 0,15)			

11. Estudio de Estabilidad.

ISO 12217-1

HOJA DE CÁLCULO Nº 6b RESISTENCIA A LAS OLAS + VIENTO

Obtenida de la curva de momentos de adrizamiento (véase el anexo D)

Balance trasversal debido a las olas y al viento:

Característica	Símbolo	Unidad	categoría A	Categoría B	Referencia
Ángulo de estabilidad nula	\mathcal{O}_V	Grados			3.3.8
Menor valor de \mathcal{O}_D , \mathcal{O}_V , o 50°	\emptyset_{A2}	Grados		50	
Momento de escora debido al viento =0,3 A'_{LV} $(A'_{LV}/L_{WL} + T_M) V_W^2$	$M_{ m W}$	N * m		30096,293	6.3.2
$\begin{split} &\text{\'Angulo previsto Categor\'aA=}(25+20/V_D) \\ &\text{De balance} & &\text{Categor\'aB=}(20+20/V_D) \end{split}$	\emptyset_R	Grados		20,839	6.3.2
Área A1 por debajo de M_W , desde la posición equilibrio hasta \mathcal{O}_R	de A_I	Cualquiera		1638,047	Figura 5
Área A_2 por encima de M_W , desde la posición equilibrio hasta \mathcal{O}_{A_2}	de A_2	Cualquiera		4684,836	Figura5
Relación de A ₂ /A ₁		-		2,85	6.3.2
¿Es la relación A_2/A_1 mayor o igual a 1,0?	SI/NO	,		SI	6.3.2

Resistencia a las Olas:

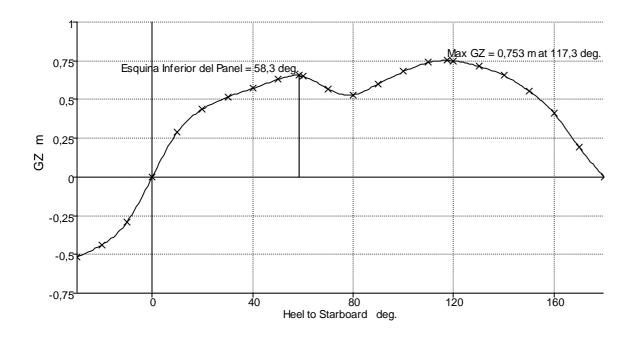
Característica	Símbolo	Unidad	categoría A	Categoría B	Referencia
Menor valor de \mathcal{O}_D , \mathcal{O}_V , o 50°	\emptyset_{A2}	Grados	5	0	
Ángulo de escora cuando el momento de adrizamiento		Grados	11	3,6	
es máximo					
Si \mathcal{O}_{GZmax} es mayor o igual a 30°:					
Valor máximo de momento de adrizamiento en la zona	RM_{max}	N*m	2100	17,42	
entre 30° y \mathcal{O}_{A2}					
Máximo valor del momento de adrizamiento requerido		N*m		7	
¿Es RM _{max} mayor o igual que el máximo valor requerido	? CUMPLE/N	O CUMPLE	CUM	IPLE	
Máximo valor del par de adrizamiento requerido=	GZ_{max}	М	0.3	743	
$RM_{max} / (9,806 m_{LDC})$	GZ _{max}	141	0,1	143	
Valor máximo del brazo del par de adrizamiento		М	0	20	
requerido		141	0,	20	
¿Es GZ _{max} mayor o igual que el valor máximo requerido	? CUMPLE/N	O CUMPLE	CUM	1PLE	
Si Ø _{GZmax} es menor 30°:	RM_{max}	N*m			
Valor máximo del par de adrizamiento	Kivi _{max}	IV III			
Valor requerido de RM _{max} (A=750/Ø _{GZmax} , B=210/	\emptyset_{GZmax})	N*m			
¿Es RM mayor o igual que el valor máximo requerido	o? CUMF	PLE / NO			
CUMPLE					
Valor máximo del brazo del par de adrizamiento=	GZ_{max}	М			
RM_{max} / (9,806 m_{LDC})	GZ _{max}	IVI			
Valor máximo del brazo del par de adrizamiento		М			
requerido = $6/\mathcal{O}_{GZmax}$		141			
¿Es GZ _{max} mayor o igual que el valor máximo requerido	? CUMPLE/N	O CUMPLE			

11. Estudio de Estabilidad.

ANEXO 2

RESULTADOS OBTENIDOS POR EL PROGRAMA HYDROMAX 9.52

Los cálculos realizados en este programa son los siguientes:


- Cálculo de estabilidad a grandes ángulos en la condición Mínima Operativa (incluyendo la posición de las aberturas inundables).
- Cálculo de estabilidad a grandes ángulos en la condición de Máxima Carga (incluyendo la posición de las aberturas inundables).
- Cálculo del asiento de equilibrio en la condición Mínima Operativa.
- Cálculo del asiento de equilibrio en la condición de Máxima Carga.
- Cálculo del asiento de equilibrio en la condición de tripulación a una banda.

11. Estudio de Estabilidad.

Stability Calculation -

- _ Loadcase Minima Operativa
- _ Damage Case Intact
- $_$ Free to Trim
- _ Relative Density = 1,025
- _ Fluid analysis method: Simulate fluid movement

	Item Name	Quantity	Weight tonne	Long.Arm m	Vert.Arm m
1	. Rosca	1	24,13	6,372	1,665
2	Gasoil	1	0,2940	4,928	0,950
(.)	agua	1	0,0800	4,928	1,600
4	Tripulación Cubierta Superior	3	0,0750	5,613	3,000
		Total Weight=	24,73	LCG=6,343 m	VCG=1,668 m

	Heel to Starboard degrees	-30	-20	-10	0	10	20
	Theer to Starboard degrees	30	20	10	J		20
1	Displacement tonne	24,73	24,73	24,73	24,73	24,73	24,73
2	Draft at FP m	0,641	0,788	0,879	0,914	0,879	0,788
3	Draft at AP m	0,534	0,709	0,803	0,819	0,803	0,708
4	WL Length m	14,225	14,651	14,901	14,970	14,900	14,651
5	Immersed Depth m	1,031	0,865	0,843	0,885	0,843	0,864
6	WL Beam m	3,574	3,801	4,146	4,380	4,146	3,799
7	Wetted Area m^2	54,665	54,683	56,662	59,769	56,661	54,698
8	Waterpl. Area m^2	42,449	43,660	46,947	50,636	46,947	43,679
9	Prismatic Coeff.	0,777	0,737	0,726	0,726	0,726	0,738
10	Block Coeff.	0,452	0,498	0,455	0,408	0,455	0,499
11	LCB from Amidsh. (+ve fwd) m	-1,056	-1,057	-1,058	-1,056	-1,059	-1,057
12	VCB from DWL m	0,335	0,320	0,303	0,286	0,303	0,320
13	GZ m	-0,517	-0,438	-0,290	0,000	0,290	0,438
14	LCF from Amidsh. (+ve fwd) m	-0,405	-0,532	-0,646	-0,670	-0,646	-0,534
15	TCF to zero pt. m	-1,251	-0,909	-0,470	0,000	0,470	0,909
16	Max deck inclination deg	30,0	20,0	10,0	0,4	10,0	20,0
17	Trim angle (+ve by stern) deg	-0,4	-0,3	-0,3	-0,4	-0,3	-0,3

	30	40	50	60	70	80	90	100
1	24,73	24,73	24,73	24,73	24,73	24,73	24,73	24,73
2	0,643	0,398	-0,089	-1,013	-2,890	-8,618	N/A	-14,450
3	0,530	0,268	0,001	-0,511	-1,506	-4,724	N/A	-8,724
4	14,230	14,401	14,416	14,225	14,523	14,885	15,031	15,058
5	1,029	1,135	1,227	1,252	1,345	1,394	1,332	1,205
6	3,567	3,547	3,805	3,371	3,519	4,211	4,551	4,636
7	54,731	56,094	54,924	54,633	56,284	62,094	63,769	63,784
8	42,534	43,277	43,594	38,336	36,475	40,234	41,448	41,054
9	0,781	0,783	0,725	0,700	0,640	0,568	0,503	0,449
10	0,454	0,409	0,352	0,395	0,345	0,271	0,260	0,282
11	-1,055	-1,056	-1,069	-1,090	-1,117	-1,145	-1,171	-1,197
12	0,334	0,349	0,377	0,391	0,407	0,390	0,355	0,351
13	0,517	0,572	0,630	0,651	0,568	0,531	0,601	0,680
14	-0,410	-0,267	-0,084	0,017	-0,043	-0,021	-0,045	-0,094
15	1,252	1,547	1,867	2,078	2,199	2,454	2,472	2,280
16	30,0	40,0	50,0	60,0	70,0	80,0	90,0	100,0
17	-0,4	-0,5	0,3	1,9	5,3	14,7	90,0	21,1

	110	120	130	140	150	160	170	180
	110	120	130	1	130	10	170	10
1	24,73	24,73	24,73	24,73	24,73	24,73	24,73	24,73
2	-8,711	-6,863	-5,929	-5,317	-4,765	-4,319	-3,975	-3,812
3	-5,289	-4,131	-3,618	-3,417	-3,493	-3,663	-3,875	-3,985
4	14,938	14,589	14,335	14,237	12,642	11,975	12,430	12,827
5	1,244	1,405	1,631	1,755	1,707	1,570	1,386	1,268
6	4,882	4,767	4,704	4,756	4,728	4,683	4,093	4,042
7	62,045	59,111	55,881	51,972	48,022	44,126	45,954	55,659
8	39,220	36,301	33,863	32,231	31,584	30,920	33,260	43,313
9	0,406	0,376	0,350	0,333	0,384	0,431	0,418	0,404
10	0,261	0,242	0,216	0,199	0,232	0,285	0,336	0,361
11	-1,230	-1,270	-1,300	-1,308	-1,258	-1,176	-1,082	-1,030
12	0,388	0,444	0,501	0,546	0,559	0,554	0,528	0,516
13	0,739	0,750	0,714	0,655	0,555	0,412	0,190	0,000
14	-0,315	-0,439	-0,435	-0,373	-0,127	0,106	0,658	1,776
15	2,076	1,907	1,703	1,482	1,222	0,846	0,304	-0,001
16	109,9	119,9	129,8	139,7	149,7	159,9	170,0	179,3
17	13,0	10,5	8,9	7,3	4,9	2,5	0,4	-0,7

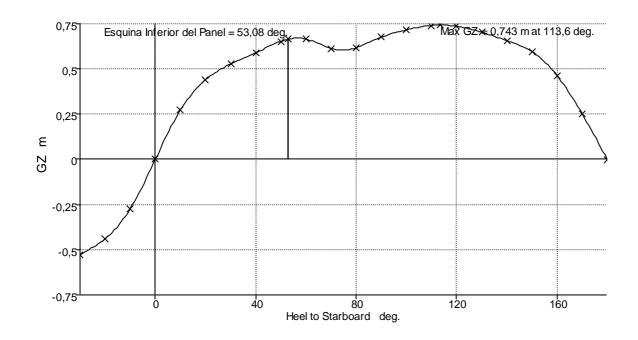
	Key point	Туре
1	Margin Line (immersion pos = -0.02 m)	
2	Deck Edge (immersion pos = -0.02 m)	
3	Esquina Inferior del Panel	Downflooding point
4	Esquina superior del Panel	Downflooding point

	DF angle deg	Freeboard m
1	13,63	
2	15,66	
3	58,3	
4	86,34	

11. Estudio de Estabilidad.

Stability Calculation

Loadcase - Máximo


Damage Case - Intact

Free to Trim

Relative Density = 1,025

Fluid analysis method: Simulate fluid movement

	Item Name	Quantity	Weight tonne	Long.Arm m	Vert.Arm m
1	Rosca	1	24,13	6,372	1,665
2	Gasoil	1	2,940	4,928	0,950
3	agua	1	0,800	4,928	1,600
4	Personas cub sup	8	0,0750	5,613	3,000
5	Personas cub inf	6	0,0750	9,013	1,000
6	Equipaje y viveres	1	0,3500	6,443	1,670
7		Total Weight=	29,27	LCG=6,211 m	VCG=1,608 m

	Heel to Starboard degrees	-30	-20	-10	0	10	20
1	Displacement tonne	29,27	29,27	29,27	29,27	29,27	29,27
2	Draft at FP m	0,666	0,819	0,910	0,942	0,909	0,819
3	Draft at AP m	0,727	0,872	0,945	0,951	0,945	0,871
4	WL Length m	14,318	14,731	14,982	15,037	14,981	14,731
5	Immersed Depth m	1,191	1,018	0,930	0,951	0,931	1,017
6	WL Beam m	3,816	4,041	4,602	4,508	4,602	4,039
7	Wetted Area m^2	59,333	59,218	61,371	62,929	61,371	59,239
8	Waterpl. Area m^2	44,543	46,027	50,100	51,721	50,099	46,053
9	Prismatic Coeff.	0,734	0,696	0,670	0,679	0,670	0,697
10	Block Coeff.	0,438	0,466	0,438	0,436	0,438	0,466
11	LCB from Amidsh. (+ve fwd) m	-1,199	-1,198	-1,197	-1,195	-1,198	-1,199
12	VCB from DWL m	0,381	0,364	0,342	0,323	0,342	0,364
13	GZ m	-0,528	-0,439	-0,275	0,000	0,275	0,440
14	LCF from Amidsh. (+ve fwd) m	-0,355	-0,522	-0,722	-0,640	-0,722	-0,525
15	TCF to zero pt. m	-1,230	-0,870	-0,390	0,000	0,390	0,870
16	Max deck inclination deg	30,0	20,0	10,0	0,0	10,0	20,0
17	Trim angle (+ve by stern) deg	0,2	0,2	0,1	0,0	0,1	0,2

	30	40	50	60	70	80	90	100
1	29,27	29,27	29,27	29,27	29,27	29,27	29,27	29,27
2	0,668	0,416	-0,105	-1,040	-2,954	-8,824	N/A	-14,724
3	0,722	0,492	0,323	-0,030	-0,769	-3,304	N/A	-7,253
4	14,323	14,447	14,408	14,223	14,480	14,807	14,915	14,940
5	1,186	1,285	1,434	1,492	1,596	1,641	1,583	1,461
6	3,809	3,689	3,981	3,627	3,987	4,543	4,655	4,718
7	59,407	60,759	59,386	59,248	62,055	66,485	67,277	67,220
8	44,653	45,120	45,151	39,650	39,307	42,180	42,103	41,477
9	0,738	0,747	0,688	0,663	0,601	0,533	0,478	0,434
10	0,439	0,411	0,342	0,365	0,305	0,255	0,256	0,273
11	-1,200	-1,200	-1,220	-1,245	-1,276	-1,305	-1,334	-1,363
12	0,381	0,393	0,424	0,452	0,468	0,447	0,417	0,415
13	0,529	0,591	0,652	0,666	0,614	0,618	0,676	0,717
14	-0,362	-0,217	-0,004	-0,034	-0,094	-0,085	-0,085	-0,137
15	1,231	1,547	1,864	1,995	2,232	2,492	2,464	2,281
16	30,0	40,0	50,0	60,0	70,0	80,0	90,0	100,0
17	0,2	0,3	1,7	3,9	8,4	20,4	90,0	26,8

	110	120	130	140	150	160	170	180
1	29,27	29,27	29,27	29,27	29,27	29,27	29,27	29,27
2	-8,843	-6,947	-6,043	-5,508	-5,173	-4,836	-4,450	-4,119
3	-4,552	-3,617	-3,157	-2,935	-2,833	-2,900	-3,111	-3,358
4	14,832	14,514	14,155	13,754	12,942	10,246	8,664	7,747
5	1,412	1,586	1,834	2,009	2,072	1,998	1,835	1,698
6	4,900	5,070	4,998	4,993	4,845	4,698	4,496	4,096
7	66,268	63,863	60,433	56,242	50,295	45,377	42,145	43,008
8	40,398	38,264	36,101	34,191	31,473	28,332	26,566	27,576
9	0,397	0,372	0,349	0,332	0,336	0,431	0,546	0,650
10	0,274	0,241	0,217	0,204	0,216	0,293	0,428	0,525
11	-1,398	-1,439	-1,482	-1,515	-1,540	-1,517	-1,435	-1,335
12	0,446	0,497	0,554	0,605	0,648	0,671	0,671	0,652
13	0,741	0,737	0,703	0,657	0,597	0,464	0,254	-0,002
14	-0,322	-0,520	-0,640	-0,724	-0,755	-0,639	-0,566	-0,424
15	2,067	1,865	1,658	1,440	1,181	0,858	0,464	-0,005
16	109,9	119,8	129,6	139,4	149,1	158,9	168,8	177,1
17	16,2	12,7	11,0	9,9	9,0	7,4	5,2	2,9

	Key point	Туре
1	Margin Line (immersion pos = -0.02 m)	
2	Deck Edge (immersion pos = -0.02 m)	
3	Esquina Inferior del Panel	Downflooding point
4	Esquina superior del Panel	Downflooding point

	DF angle deg	Freeboard m
1	9,77	
2	11,73	
3	53,08	
4	82,54	

11. Estudio de Estabilidad.

Equilibrium Calculation

Loadcase - Minima Operativa Damage Case - Intact

Free to Trim

Relative Density = 1,025

Fluid analysis method: Simulate fluid movement

	Item Name	Quantity	Weight tonne	Long.Arm m	Vert.Arm m
1	Rosca	1	24,13	6,372	1,665
2	Gasoil	1	0,2940	4,928	0,950
3	agua	1	0,0800	4,928	1,600
4	Tripulacion Cubierta Superior	3	0,0750	5,613	3,000
5		Total Weight=	24,73	LCG=6,343 m	VCG=1,668 m

1	Draft Amidsh. m	0,867				
2	Displacement tonne	24,73				
3	Heel to Starboard degrees	0				
4	Draft at FP m	0,914				
5	Draft at AP m	0,819				
6	Draft at LCF m	0,862				
7	Trim (+ve by stern) m	-0,095				
8	WL Length m	14,971				
9	WL Beam m	4,380				
10	Wetted Area m^2	59,774				
11	Waterpl. Area m^2	50,639				
12	Prismatic Coeff.	0,726				
13	Block Coeff.	0,408				
14	Midship Area Coeff.	0,595				
15	Waterpl. Area Coeff.	0,772				
16	LCB from Amidsh. (+ve fwd) m	-1,056				
17	LCF from Amidsh. (+ve fwd) m	-0,670				
18	KB m	0,574				
19	KG solid m	1,668				
20	BMt m	2,972				
21	BML m	31,431				
22	GMt m	1,877				
23	GML m	30,336				
24	KMt m	3,545				
25	KML m	32,004				
26	Immersion (TPc) tonne/cm	0,519				
27	MTc tonne.m	0,498				
28	RM at 1deg = GMt.Disp.sin(1) tonne.m	0,796				
29	Max deck inclination deg	0,4				
30	Trim angle (+ve by stern) deg	-0,4				

11. Estudio de Estabilidad.

Equilibrium Calculation -

Loadcase - Máximo

Damage Case - Intact

Free to Trim

Relative Density = 1,025

Fluid analysis method: Simulate fluid movement

	Item Name	Quantity	Weight tonne	Long.Arm m	Vert.Arm m
1	Rosca	1	24,13	6,372	1,665
2	Gasoil	1	2,940	4,928	0,950
3	agua	1	0,800	4,928	1,600
4	Personas cub sup	8	0,0750	5,613	3,000
5	Personas cub inf	6	0,0750	9,013	1,000
6	Equipaje y viveres	1	0,3500	6,443	1,670
7		Total Weight=	29,27	LCG=6,211 m	VCG=1,608 m

1	Draft Amidsh. m	0,947				
2	Displacement tonne	29,27				
3	Heel to Starboard degrees	0				
4	Draft at FP m	0,942				
5	Draft at AP m	0,951				
6	Draft at LCF m	0,947				
7	Trim (+ve by stern) m	0,009				
8	WL Length m	15,036				
9	WL Beam m	4,508				
10	Wetted Area m^2	62,929				
11	Waterpl. Area m^2	51,720				
12	Prismatic Coeff.	0,679				
13	Block Coeff.	0,436				
14	Midship Area Coeff.	0,642				
15	Waterpl. Area Coeff.	0,763				
16	LCB from Amidsh. (+ve fwd) m	-1,196				
17	LCF from Amidsh. (+ve fwd) m	-0,640				
18	KB m	0,624				
19	KG solid m	1,608				
20	BMt m	2,607				
21	BML m	27,529				
22	GMt m	1,624				
23	GML m	26,545				
24	KMt m	3,231				
25	KML m	28,153				
26	Immersion (TPc) tonne/cm	0,530				
27	MTc tonne.m	0,517				
28	RM at 1deg = GMt.Disp.sin(1) tonne.m	0,817				
29	Max deck inclination deg	0,0				
30	Trim angle (+ve by stern) deg	0,0				

11. Estudio de Estabilidad.

Equilibrium Calculation

Loadcase - Ensayo Compensación Pesos Damage Case - Intact

Free to Trim

Relative Density = 1,025

Fluid analysis method: Simulate fluid movement

	Item Name	Quantity	Weight tonne	Long.Arm m
1	Rosca	1	24,13	6,372
2	Gasoil	1	2,940	4,928
3	agua	1	0,800	4,928
4	Momento de escora Tripulacion a	1	1,984	5,613
5	Equipaje y viveres	1	0,3500	6,443
6		Total Weight=	30,20	LCG=6,141 m

	Vert.Arm m	Trans.Arm m
1	1,665	0,000
2	0,950	0,000
3	1,600	0,000
4	3,000	1,000
5	1,670	0,000
6	VCG=1,682 m	TCG=0,067 m

1	Draft Amidsh. m	0,960				
2	Displacement tonne	30,20				
3	Heel to Starboard degrees	2,51				
4	Draft at FP m	0,932				
5	Draft at AP m	0,988				
6	Draft at LCF m	0,962				
7	Trim (+ve by stern) m	0,056				
8	WL Length m	15,019				
9	WL Beam m	4,550				
10	Wetted Area m^2	63,501				
11	Waterpl. Area m^2	51,873				
12	Prismatic Coeff.	0,661				
13	Block Coeff.	0,431				
14	Midship Area Coeff.	0,651				
15	Waterpl. Area Coeff.	0,759				
16	LCB from Amidsh. (+ve fwd) m	-1,269				
17	LCF from Amidsh. (+ve fwd) m	-0,661				
18	KB m	0,632				
19	KG solid m	1,682				
20	BMt m	2,546				
21	BML m	26,744				
22	GMt m	1,500				
23	GML m	25,698				
24	KMt m	3,178				
25	KML m	27,375				
26	Immersion (TPc) tonne/cm	0,532				
27	MTc tonne.m	0,516				
28	RM at 1deg = GMt.Disp.sin(1) tonne.m	0,779				
29	Max deck inclination deg	2,5				
30	Trim angle (+ve by stern) deg	0,2				

Tomás González Orrequia Julio de 2007

<u>Sección 12.</u> <u>Presupuesto Orientativo.</u>

12. Presupuesto Orientativo.

12. PRESUPUESTO ORIENTATIVO.

Más que presupuesto orientativo, esta sección debería llamarse "Precio Orientativo de Mercado", ya que calcular el presupuesto de esta embarcación, incluyendo horas de trabajo, construcción de un modelo, un molde, moldes de cubierta, de superestructura, construcción de la embarcación, motorización, equipamiento interior,... etc. La lista seria interminable y bastante difícil de conseguir que cuadrasen las cuentas, por tanto, se hará de una manera más sencilla, por tanto habría que hacerse la siguiente pregunta: ¿Cuál seria el valor de mercado de una embarcación como esta?

Para esto hay que buscar en el mercado embarcaciones similares a esta y comparando sus precios según sus dimensiones, prestaciones, equipamientos, etc... Buscar un posicionamiento de esta embarcación.

Tras la búsqueda por Internet del precio de los diversos modelos, se pueden sacar dos conclusiones:

- Tanto marcas como importadores no proporcionan el precio de ninguna embarcación de este nivel a nadie que no sea un posible cliente.
- Existe un amplio mercado de ocasión en el que se pueden encontrar este tipo de embarcación, incluso con modelos fabricadas en este año (2007).

12. Presupuesto Orientativo.

Ya que de estas embarcaciones matriculadas en 2007 sí se pueden conseguir el precio, y aunque sean de segunda mano, el precio es muy similar al de fabrica, ya que son embarcaciones sin apenas uso. Normalmente los precios que aparecen el los anuncios ya sean en revistas especializadas o en Internet, son sin impuestos, es decir, no incluyen el impuesto de transmisiones. Por tanto, para saber el precio de la embarcación, habria que restarle el IVA y el impuesto de matriculación, que son un 16% y un 12% respectivamente, así se sabria el precio de salida del astillero. También se rectificará el precio añadiéndole un 5% de más si son embarcaciones de este año y de un 10% si lo son del año pasado.

12. Presupuesto Orientativo.

	año	precio venta	precio venta Precio sin Imp. LOA		Manga P	otencia Total I	Desplazamiento	Velocidad	Precio/eslora	Precio/manga	Precio/potencia	Manga Potencia Total Desplazamiento Velocidad Precio/eslora Precio/manga Precio/potencia Precio/desplazamiento	Precio/Velocida	9
Neptunus 58	2006	870000	689040	17,2	4,78	1400	24500	30	40060,46512	144150,6276	492,1714286	28,12408163	22968	
Princess V58	2007	1171000	885276	18,2	4,62	1550	24000	39	48641,53846	191618,1818	571,1458065	36,8865	22699,38462	
Alfamarine 58	2007	1375000	1039500	19	4,6	2200	29000	49	54710,52632	225978,2609	472,5	35,84482759	21214,28571	
Sunseeker Predator 62 2006	2006	1370000	1085040	19,6	- CO	2000	31000	40	55359,18367	217008	542,52	35,00129032	27126	
Sinergia 67	2006	1625000	1287000	20,2	- LO	2720	29000	48	63712,87129	257400	473,1617647	44,37931034	26812,5	
Pershing 62	2006	200000	1584000	19,4	- CO	2300	34000	40	81649,48454	316800	688,6956522	46,58823529	39600	
Riva Vertigo 63	2007	2250000	1701000	19,6	8,	2720	31500	40	86785,71429	354375	625,3676471	54	42525	
Riva Ego 68	2007	2500000	1890000	20,9	5,45	3100	41000	88	90430,62201	346788,9908	609,6774194	46,09756098	49736,84211	
Baia Azzurra	2006	2754000	2181168	18,9	5,03	3000	25000	20	115405,7143	433631,8091	727,056	87,24672	43623,36	
									70750,68	276416,7634	578,0328576	46,01872513	32922,81916	
Embarcacion Media				19,22	4,92	2332,222	29888,89	41,556	1359985,293	1359970,476	1348101,076	1375448,562	1368126,041	1362326,3
Nuevo Proyecto				19,2	Ŋ	2720	29200	45	1358413,056	1382083,817	1572249,373	1343746,774	1481526,862	1427604

12. Presupuesto Orientativo.

Analizando la tabla se ve una gran diferencia entre las tres embarcaciones de menores dimensiones y las demás, estas además de ser las menores, son las menos motorizadas y con un equipamiento y unos acabados inferiores, también tienen una habitabilidad interior bastante inferior a las demás. En lo que no se quedan atrás es en prestaciones, sobre todo la Alfamarine.

En la otra punta de la tabla, se encuentran las más caras, que no son otras que la exuberante en todos sus números **Riva Ego 68** (**1890000**), que es la mayor en todas las dimensiones, la más pesada y más potente. Su habitabilidad es muy superior a las demás y con un nivel de acabados superior a la media. Y la otra embarcación que se posiciona como la más cara es la **Baia Azzurra** (**218000**), esta no es la más grande, ni la más habitable, ni la mejor acabada, pero aprovecha la experiencia de la marca en carreras de Off-shore para realizar un exclusivo y caro casco en sándwich de kevlar y resinas epoxi, que proporciona un bajo desplazamiento, que unido a su gran potencia y a sus hélices de superficie la convierten en la más rápida.

Para obtener un precio aproximado de la embarcación proyectada, se han utilizado los precios de las embarcaciones y se han sacado relaciones con la eslora total, la manga, el desplazamiento, la velocidad y la potencia total instalada. Con los valores medios de cada relación se aprovechan para obtener el precio aproximado de yate proyectado.

Según los cálculos la embarcación proyectada debería tener un precio aproximado de **1430000€**, lo cual la situaría entre los modelos **Sinergia 67 (1287000€)** y la **Pershing 62 (1580000€)**. Comparándolas, se ven grandes parecidos entre la Sinergia y la Pág. 164 (170)

12. Presupuesto Orientativo.

proyectada, ya que las motorizaciones son iguales, tienen la misma manga, un desplazamiento similar, el mismo sistema de propulsión y una velocidad muy parecida, ya que los 48 nudos de la Sinergia están conseguidos a 1/3 de carga. La mayor diferencia se establece en la eslora, siendo esta de 20,2 m. aunque esta está condicionada por una plataforma de popa muy grande, sobre todo para proteger las hélices.

Con el modelo **Pershing 62** las coincidencias vienen con una eslora similar, idéntica manga, pero las diferencias son grandes sobre todo en una menor potencia, y un desplazamiento muy superior, dando ambos factores una velocidad inferior. Esta tiene un diseño, equipamiento y acabados muy altos, los cuales justifican en parte su precio.

Como conclusión final y a titulo personal, creo que el precio debería ser muy parecido a la *Sinergia 67*, rondando los *1287000€.* Para ser totalmente competitivo, ya que la embarcación a la que más se parece es a esta, tanto por dimensiones, por acabados, habilitación, y prestaciones. Por tanto el precio final tiene que ser aproximadamente *1300000€.* A lo que sumándole el impuesto de matriculación y el IVA seria aproximadamente *1664000€.*

Tomás González Orrequia Julio de 2007

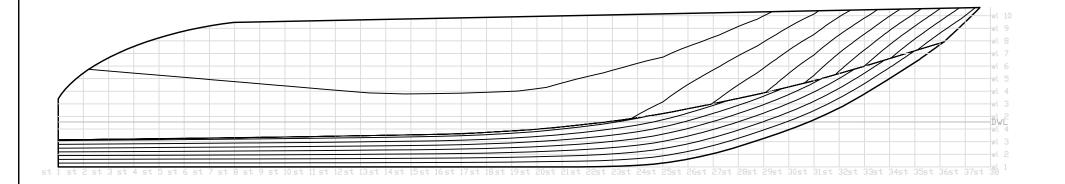
<u>Sección 13.</u> <u>Conclusiones Finales.</u>

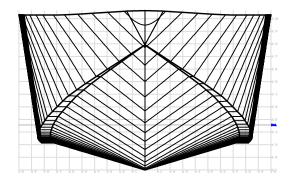
13. Conclusiones Finales.

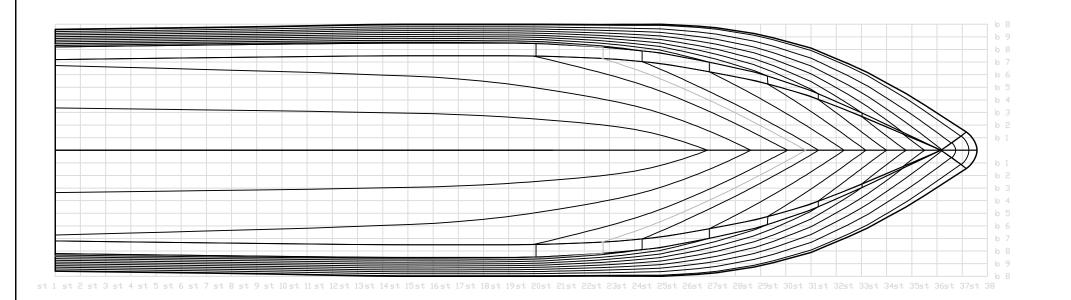
13. CONCLUSIONES FINALES.

La embarcación proyectada se integra perfectamente dentro del mercado de yates Open de Altas Prestaciones, perfectamente unas prestaciones de vértigo, con una amplísima habitabilidad interior con sus tres camarotes con aseos independientes, y una cubierta exterior con dos solariums y totalmente transitable. Las actividades náuticas están cubiertas por los dos garajes, el de popa con una moto de agua y el de la cubierta de proa con una semirrigida, y por una amplia plataforma de popa que facilita el acceso al baño.

Para finalizar y como conclusión final creo a titulo personal, la embarcación resultante del proyecto esta bastante equilibrada y bien resuelta con respecto a la competencia. Como posibles cambios en un futuro, se podría rediseñar la zona de popa, ofreciendo un garaje de banda a banda para alojar dos motos de agua, también se puede cambiar la configuración interior para contar con un camarote para la tripulación, cambiar la estructura de la superestrutura y colocar un techo de cristal retractil, y también como remate, se podría rediseñar la estructura usando un carísimo sándwich al vacío de resinas epoxi, kevlar y fibras de última generación... Para otro proyecto.

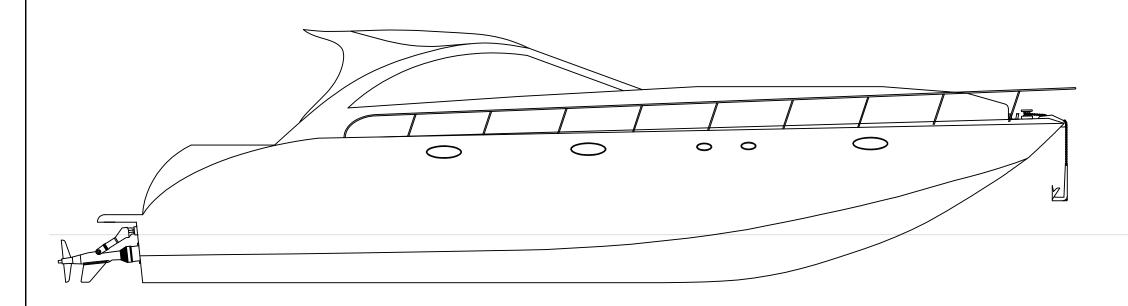

Tomás González Orrequia Julio de 2007

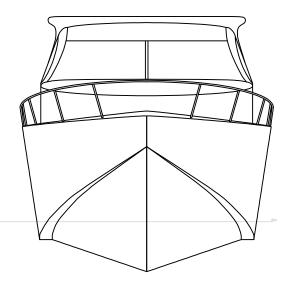

<u>Bibliografía.</u>


Bibliografía:

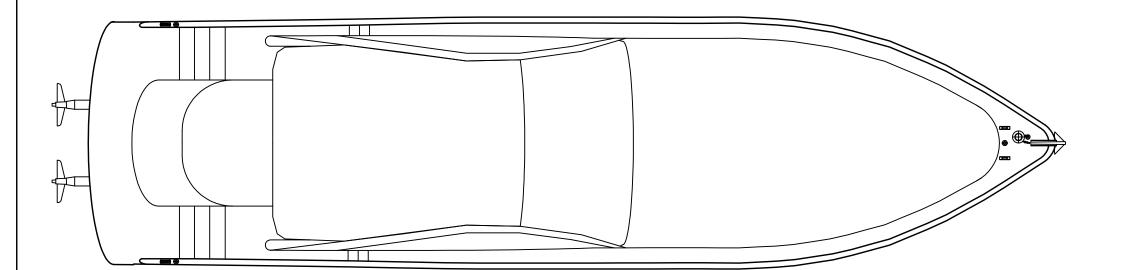
- Principales aspectos hidrodinámicos de algunas embarcaciones rápidas y no convencionales. (José Maria Álvarez-Campana).
- Ensayo con modelos de propulsión a chorro.(Ramón Quereda Laviña) (Ministerio de Defensa, Enero 2000).
- Resistance Prediction of Planning Hulls: State of Art. (John M. Almeter) (Marine Tecnology, Vol. 30, No 4, Oct 1993).
- Procedures for Hydrodynamic Evaluation of Planning Hulls in Smooth and Rough Water. (Daniel Savitsky, P. Ward Brown) (Marine Tecnology, Vol. 13, No 4, Oct 1976).
- Norma Española UNE-EN ISO 12217-1 (Octubre 2002).
- Guide for Building and Classing High Speed Naval Craft. (American Bureau of Shipping, 2007).
- Apuntes usados de la Escuela:
 - Cálculo de Estructuras Marinas. (Antonio Barrios)
 - Materiales Compuestos. (J.A. Lamas)
 - Embarcaciones Deportivas (Antonio De Querol Sahagún)
 - Teoria del Buque. (Aurelio Guzmán/Pedro Gallardo)
 - Resistencia y Propulsión (Aurelio Guzmán/Pedro Gallardo)

Anexo Planos en Formato A3.

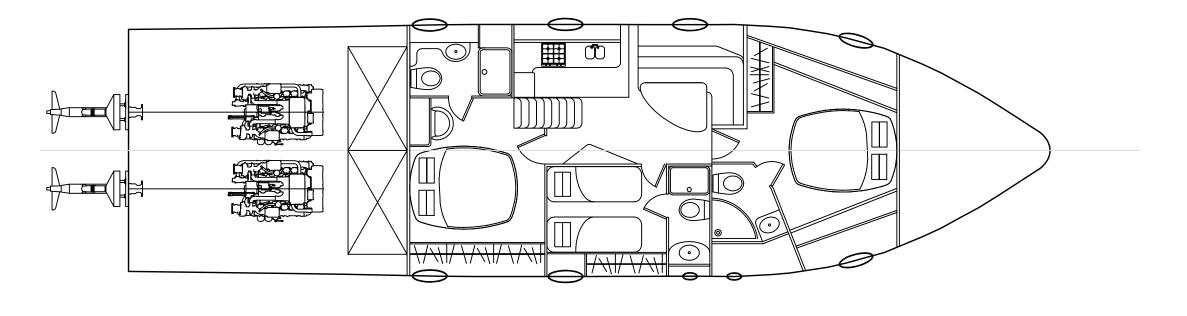


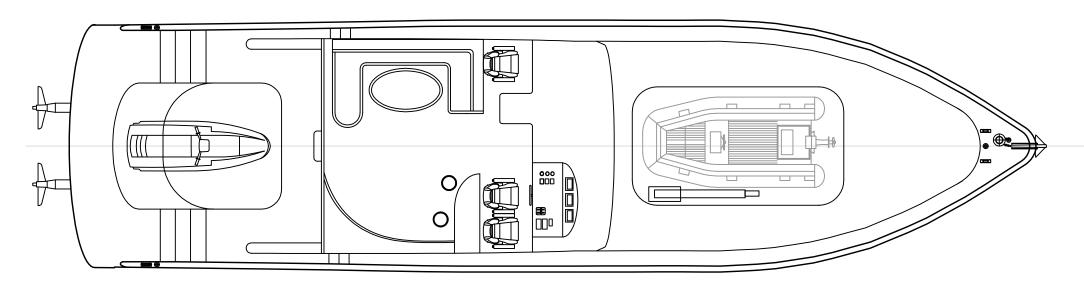


Eslora del Casco: 18,286 mts.
Eslora de Flotación: 14,671 mts.
Manga Máxima: 5,000 mts.
Manga de Flotación: 4,300 mts.
Calado en Rosca: 0,800 mts.
Calado Máximo: 0,890 mts.
Desplazamiento en Rosca: 23,174 Tn.
Desplazamiento Máximo: 28,111 Tn.
Angulo de Astilla Muerta: 17°
Espaciado de Secciones: 0,500 mts.
Espaciado Secc. longitudin: 0,250 mts.


st 1 st	2 st 3 s	t 4 st	5 st 6	5 st 7	st 8	3 st 9	9 st :	10 st 1	11 st 1	2st	13st	14st	15st	16st	17st	18st	19st	20st	21st	22st	23st	24st	25st	26st	27st	28st	29st	30st	31st	32st	33st	34st	35st	36st	37st	

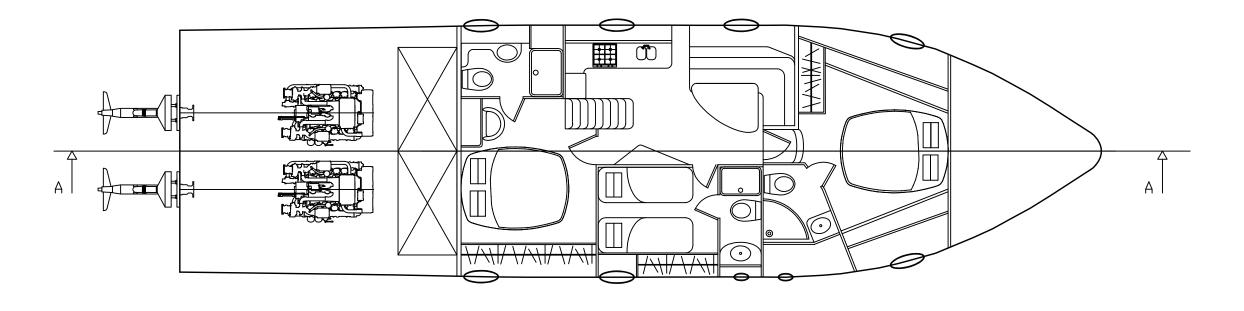
ESCUELA UNIVE	RSITARIA DE INGENIERIA TECNICA NAVAL
Proyecto de Y	ate Tipo "OPEN" de 18 mts. de Eslora
TITULO DEL PLANO	Plano de Formas
DIBUJADO	Tomás González Orrequia
№ de Plano	TG - 2007 - Sup - 1/8
FECHA	Julio de 2007
ESCALA 1:75	FIRMA:

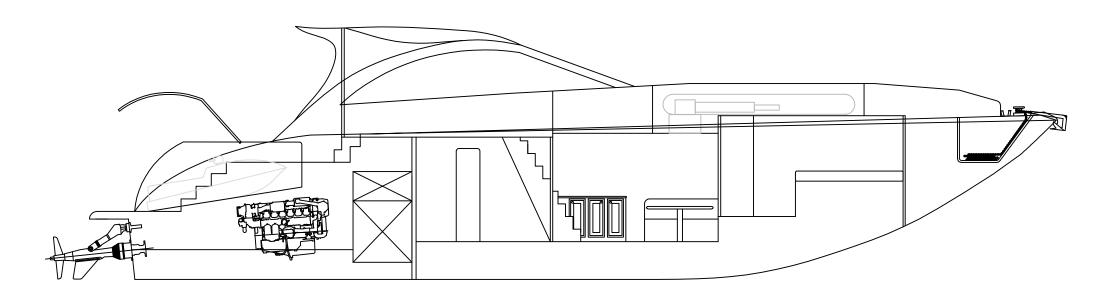

st 1 st 2 st 3 st 4 st 5 st 6 st 7 st 8 st 9 st 10 st 11 st 12 st 13 st 14 st 15 st 16 st 17 st 18 st 19 st 20 st 21 st 22 st 23 st 24 st 25 st 26 st 27 st 28 st 29 st 30 st 31 st 32 st 33 st 34 st 35 st 36 st 37



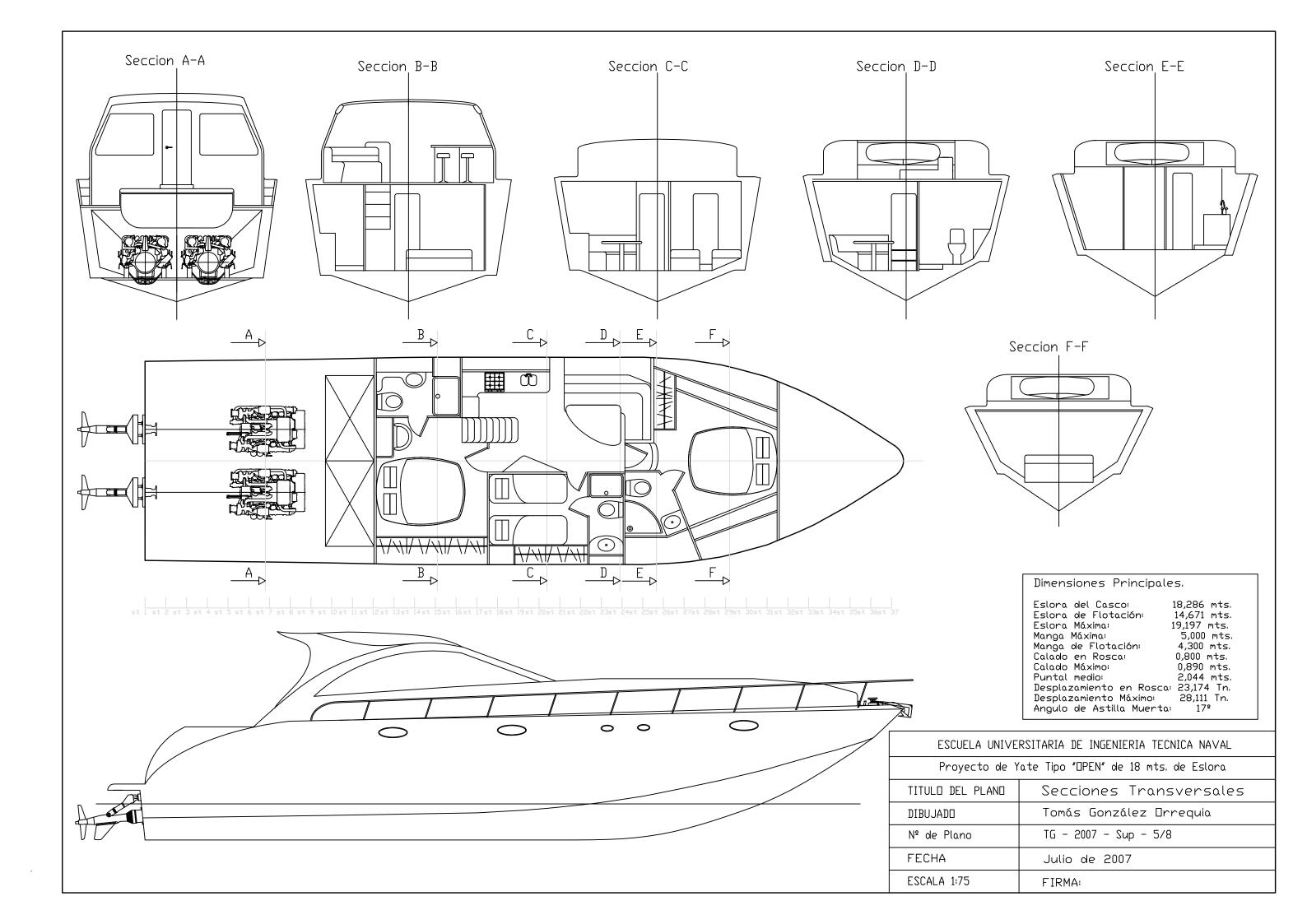
Dimensiones Principales.

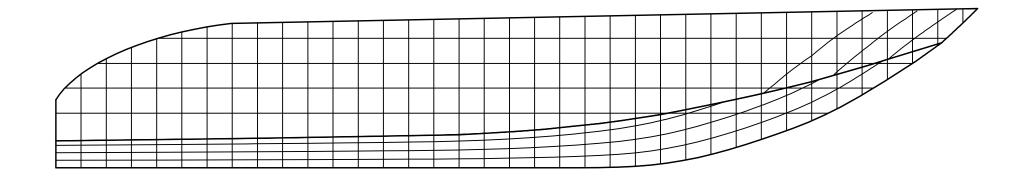
Eslora del Casco: 18,286 mts.
Eslora de Flotación: 14,671 mts.
Eslora Máxima: 19,197 mts.
Manga Máxima: 5,000 mts.
Manga de Flotación: 4,300 mts.
Calado en Rosca: 0,800 mts.
Calado Máximo: 0,890 mts.
Puntal medio: 2,044 mts.
Desplazamiento en Rosca: 23,174 Tn.
Desplazamiento Máximo: 28,111 Tn.
Angulo de Astilla Muerta: 17°

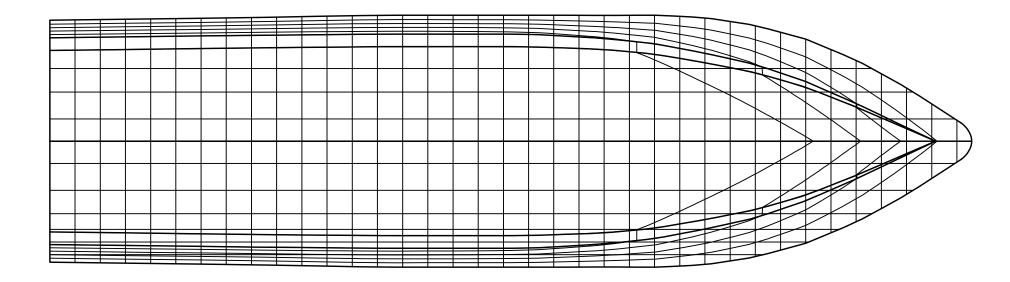

ESCUELA UNIVERSITARIA DE INGENIERIA TECNICA NAVAL					
Proyecto de Y	ate Tipo "OPEN" de 18 mts. de Eslora				
TITULO DEL PLANO	Plano de Perfil y Alzado				
DIBUJADO	Tomás González Orrequia				
№ de Plano	TG - 2007 - Sup - 2/8				
FECHA	Julio de 2007				
ESCALA 1:75	FIRMA:				

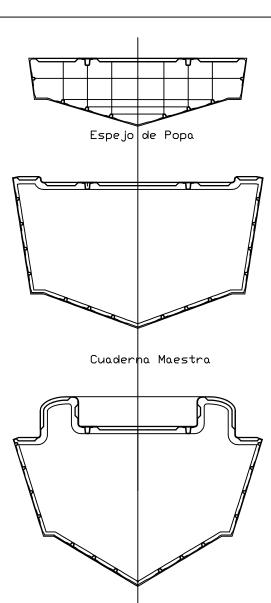


Eslora del Casco: 18,286 mts.
Eslora de Flotación: 14,671 mts.
Eslora Máxima: 19,197 mts.
Manga Máxima: 5,000 mts.
Manga de Flotación: 4,300 mts.
Calado en Rosca: 0,800 mts.
Calado Máximo: 0,890 mts.
Puntal medio: 2,044 mts.
Desplazamiento en Rosca: 23,174 Tn.
Desplazamiento Máximo: 28,111 Tn.
Angulo de Astilla Muerta: 17°


ESCUELA UNIVERSITARIA DE INGENIERIA TECNICA NAVAL						
Proyecto de Yate Tipo "OPEN" de 18 mts. de Eslora						
TITULO DEL PLANO	Cubierta Exterior e Interior					
DIBUJADO	Tomás González Orrequia					
№ de Plano	TG - 2007 - Sup - 3/8					
FECHA	Julio de 2007					
ESCALA 1:75	FIRMA:					






Eslora del Casco: 18,286 mts.
Eslora de Flotación: 14,671 mts.
Eslora Máxima: 19,197 mts.
Manga Máxima: 5,000 mts.
Manga de Flotación: 4,300 mts.
Calado en Rosca: 0,800 mts.
Calado Máximo: 0,890 mts.
Puntal medio: 2,044 mts.
Desplazamiento en Rosca: 23,174 Tn.
Desplazamiento Máximo: 28,111 Tn.
Angulo de Astilla Muerta: 17°

ESCUELA UNIVERSITARIA DE INGENIERIA TECNICA NAVAL					
Proyecto de Yate Tipo "OPEN" de 18 mts. de Eslora					
TITULO DEL PLANO	Sección Longitudinal				
DIBUJADO	Tomás González Orrequia				
№ de Plano	TG - 2007 - Sup - 4/8				
FECHA	Julio de 2007				
ESCALA 1:75	FIRMA:				

Cuaderna 25

Desplazamiento en Rosca: 23,174 Tn. Desplazamiento Máximo: 28,111 Tn.

18,286 mts. 14,671 mts.

19,197 mts.

5,000 mts.

4,300 mts.

0,890 mts. 2,044 mts.

0,800 mts.

Eslora del Casco: Eslora de Flotación:

Manga de Flotación:

Angulo de Astilla Muerta:

Calado en Rosca:

Eslora Máxima:

Manga Máxima:

Calado Máximo:

Puntal medio:

Tipos de Laminado Sandwich

	Espesor	Espesor	Espesor		
	del	del	del		
	Laminado	Núcleo	Laminado		
	Exterior	de PVC	Interior		
Cubierta	5	30	5		
Costado de la	4	30	4		
Superestructura	4	30	+		
Techo de la	4	20	4		
Superestructura	-	20	+		
Medida	A	В	С		
* medidas en milímetros					

Propiedades Mecánicas del Laminado.

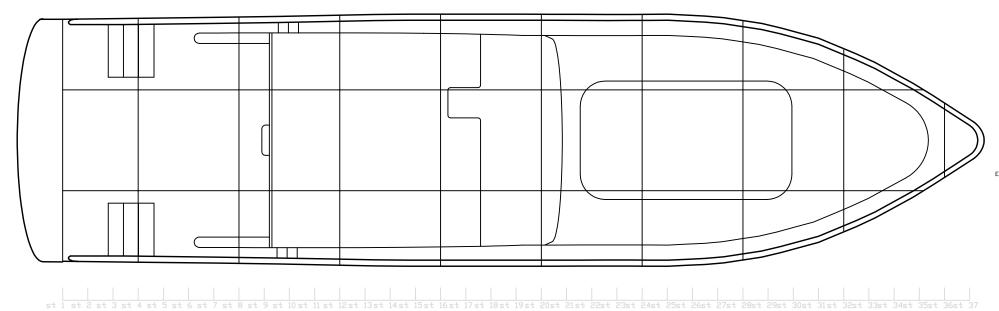
172 N/mm²

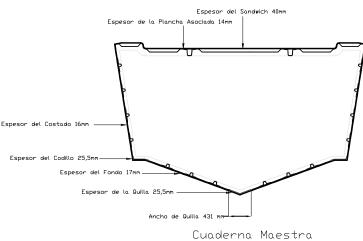
7580 N/mm²

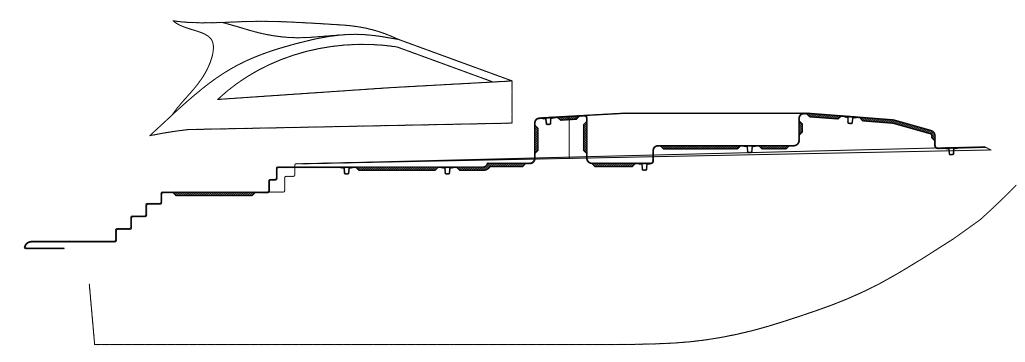
124 N/mm² 6890 N/mm²

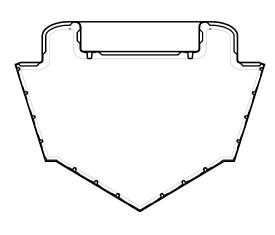
117 N/mm²

6890 N/mm²

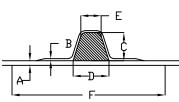

Resistencia de Flexión, F Módulo de Flexión, Ef Resistencia de Tensión, T Módulo de Tensión, E Resistencia a Compresión Módulo de Compresión


ESCUELA UNIVERSITARIA DE INGENIERIA TECNICA NAVAL					
Proyecto de Y	ate Tipo "OPEN" de 18 mts. de Eslora				
TITULO DEL PLANO	Plano de Estructura				
DIBUJADO Tomás González Orrequia					
№ de Plano	TG - 2007 - Sup - 6/8				
FECHA	Julio de 2007				
ESCALA 1:75	FIRMA				


,	L B C	
	-D-	


Tipos de Refuerzo

	Espesor de Plancha Asociada	Espesor del Refuerzo	Altura del Refuerzo	Ancho del Refuerzo (base)	Ancho del Refuerzo (arriba)	Ancho de Plancha Asociada
Longitudinal y Transversal de Fondo	17	8	60	60	40	366
Longitudinal y Transversal de Costado	16	8	50	50	30	338
Longitudinal y Transversal de Cubierta	14	10	120	90	70	342
Medición	A	В	С	D	Е	F
* medidas en n	nilimetros					


Cuaderna 25

Eslora del Casco: 18,286 mts.
Eslora de Flotación: 14,671 mts.
Eslora Máxima: 19,197 mts.
Manga Máxima: 5,000 mts.
Manga de Flotación: 4,300 mts.
Calado en Rosca: 0,800 mts.
Calado Máximo: 0,890 mts.
Puntal medio: 2,044 mts.
Desplazamiento en Rosca: 23,174 Tn.
Desplazamiento Máximo: 28,111 Tn.
Angulo de Astilla Muerta: 17°

Tipos	de	Lami	nado	Sandw	ich	ļ	
						A	₿↓
<u> </u>	<i></i>				<i></i>		C

	Espesor	Espesor	Espesor		
	del	del	del		
	Laminado	Núcleo	Laminado		
	Exterior	de PVC	Interior		
Cubierta	5	30	5		
Costado de la	4	30	4		
Superestructura	4	30	4		
Techo de la	4	20	4		
Superestructura	4	20	+		
Medida	A	В	С		
* medidas en milímetros					

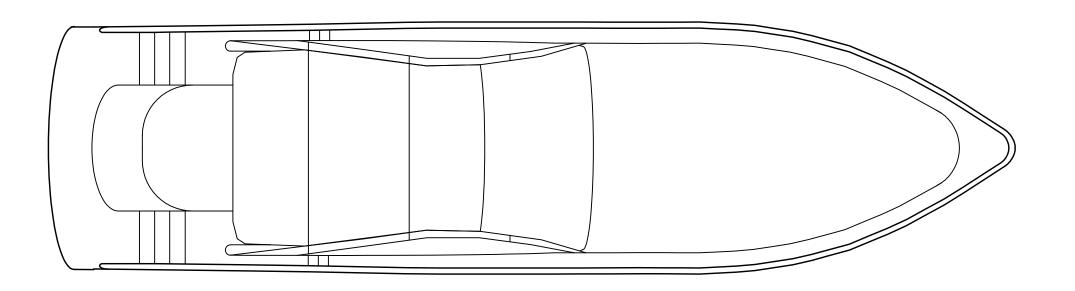
Tipos de Refuerzo

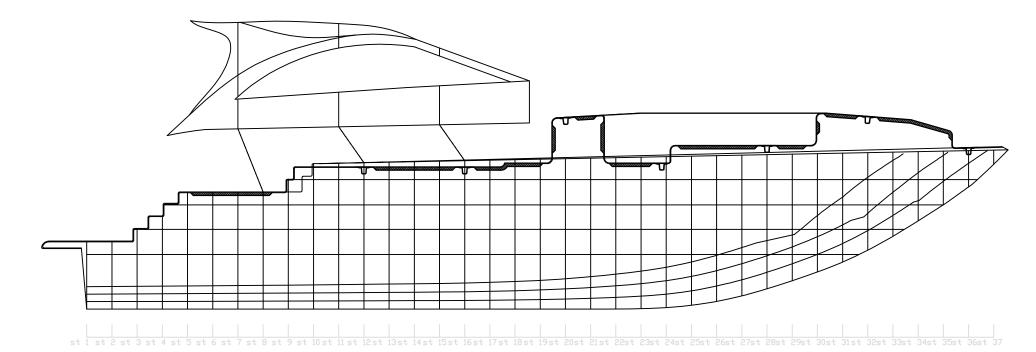
	Espesor de Plancha Asociada	Espesor del Refuerzo	Altura del Refuerzo	Ancho del Refuerzo (base)	Ancho del Refuerzo (arriba)	Ancho de Plancha Asociada
Longitudinal y Transversal de Fondo	17	8	60	60	40	366
Longitudinal y Transversal de Costado	16	8	50	50	30	338
Longitudinal y Transversal de Cubierta	14	10	120	90	70	342
Medición	A	В	С	D	Е	F
* medidas en n	nillimetros					

Propiedades Mecánicas del Laminado.

Resistencia de Flexión, F

Módulo de Flexión, Ef

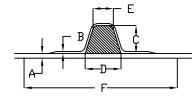

Resistencia de Tensión, T


Módulo de Tensión, E

Resistencia a Compresión

Módulo de Compresión

ESCUELA UNIVERSITARIA DE INGENIERIA TECNICA NAVAL						
Proyecto de Y	Proyecto de Yate Tipo "OPEN" de 18 mts. de Eslora					
TITULO DEL PLANO	Estructura de Cubierta					
DIBUJADO	Tomás González Orrequia					
№ de Plano	TG - 2007 - Jet - 7/8					
FECHA	Julio de 2007					
ESCALA 1:75	FIRMA					



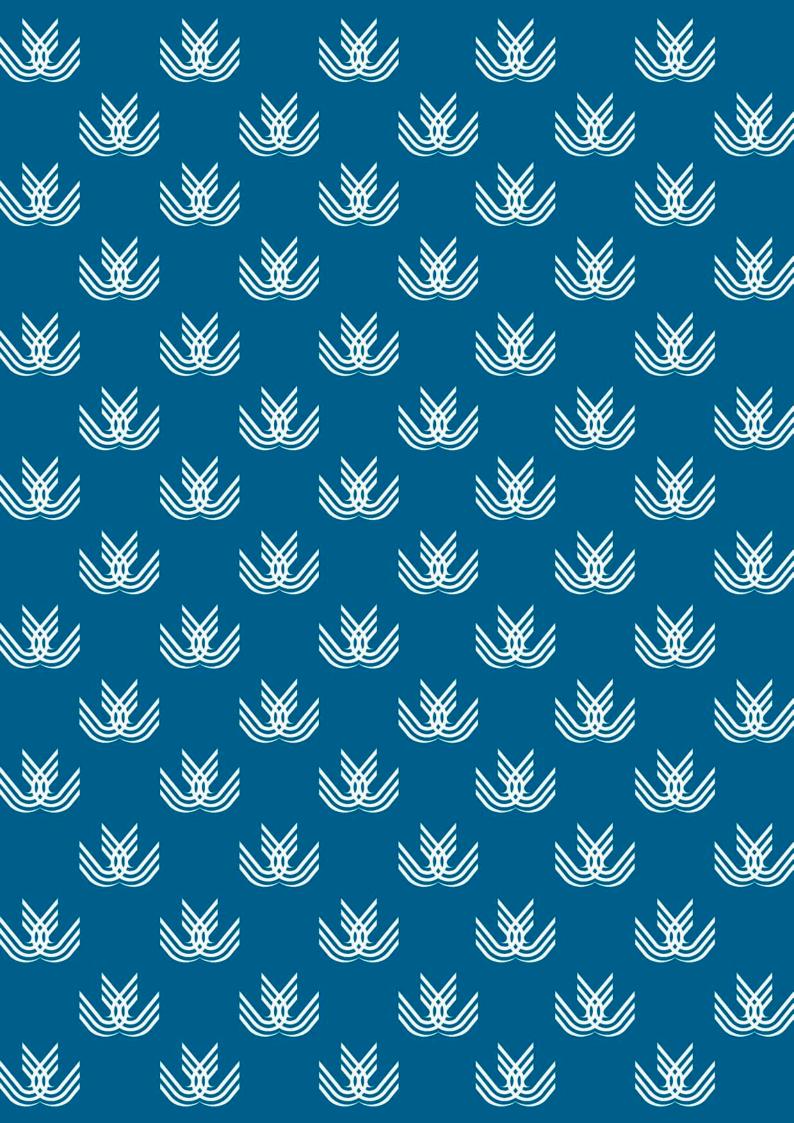
Tipos de Laminado Sandwich

	Espesor	Espesor	Espesor		
	del	del	del		
	Laminado	Núcleo	Laminado		
	Exterior	de PVC	Interior		
Cubierta	5	30	5		
Costado de la	4	30	4		
Superestructura	4	30	4		
Techo de la	4	2.0	4		
Superestructura	4	20	4		
Medida	A	В	C		
* medidas en milímetros					

Tipos de Refuerzo

	Espesor de Plancha Asociada	Espesor del Refuerzo	Altura del Refuerzo	Ancho del Refuerzo (base)	Ancho del Refuerzo (arriba)	Ancho de Plancha Asociada	
Longitudinal y Transversal de Fondo	17	8	60	60	40	366	
Longitudinal y Transversal de Costado	16	8	50	50	30	338	
Longitudinal y Transversal de Cubierta	14	10	120	90	70	342	
Medición	A	В	C	D	E	F	
* medidas en n	* medidas en milimetros						

Propiedades Mecánicas del Laminado.


Resistencia de Flexión, F Módulo de Flexión, Ef	172 N/mm² 7580 N/mm²
Resistencia de Tensión, T	124 N/mm²
Módulo de Tensión, E	6890 N/mm²
Resistencia a Compresión	117 N/mm²
Módulo de Compresión	6890 N/mm²

Dimensiones Principales.

18,286 mts. 14,671 mts. 19,197 mts. Eslora del Casco: Eslora de Flotación: Eslora Máxima: Manga Máxima: Manga de Flotación: 5,000 mts. 4,300 mts. Calado en Rosca: Calado Máximo: 0,800 mts. 0,890 mts. Puntal medio: 2,044 mts. Desplazamiento en Rosca: 23,174 Tn. Desplazamiento Máximo: 28,111 Tn. 28,111 Tn. 17° Angulo de Astilla Muerta:

ESCUELA	UNIVERSITARIA	DE	INGENIERIA	TECNICA	NAVAL

Proyecto de Yate Tipo "OPEN" de 18 mts. de Eslora			
TITULO DEL PLANO	Superestructura		
DIBUJADO	Tomás González Orrequia		
№ de Plano	TG - 2007 - Jet - 8/8		
FECHA	Julio de 2007		
ESCALA 1:75	FIRMA		

